
School of Science and Technology DCSA Program

60

 Decision Making and Looping

INTRODUCTION

In the previous lessons we have learned about the programming structure, decision making procedure,

how to write statements, as well as different types of decision or conditional statements and some

basic control statement based program. In this unit we will learn about definition of loop, declaration

and initialization of loop, various types of loop in C program and its applications and also how to

handle loops in program. In C programming language loop is very useful statement.

Timeframe

How long ?

We expect that this unit will take maximum 10 hours to complete.

Unit Structure

 Lesson- 1 : Basic concept on loop control structures

 Lesson- 2 : Understanding while loops

 Lesson- 3 : Understanding do-while loops

 Lesson- 4 : Understanding for loop

 Lesson- 5 : Understanding break and continue statements

 Lesson- 6 : Understanding goto statement

Unit

5

School of Science and Technology DCSA Program

61

 Basic Concept On Loop Control Structures

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define programming loop.

 Understand the loop control structures.

 Explain uses of loop in program.

Keywords Program, Loop, Control Structure, Entry, Exit

INTRODUCTION TO LOOP

In practical, we may encounter many circumstances, when a block of code needs to be executed several

number of times. We have already learned that in program, statements are executed sequentially. The

first statement is executed first, followed by the second, third and so on. C language provides various

control structures that allow for more complicated execution paths. In programming, a loop is a

sequence or arrangement of instruction(s) that is continually repeated until a certain condition is

reached. In looping, a sequence of statements are executed until some conditions for end of the loop are

satisfied. It is a necessary idea that is commonly used in writing programs. A loop statement permits us

to execute a statement or group of statements several times. A program loop contains two sections, such

as (1) body of the loop and (2) control statement. The control statement tests definite conditions and

then guides the repeated execution of the statements checked in the body of the loop.

A loop is a sequence or arrangement of instruction(s) that is continually repeated

until a certain condition is reached.

LOOP CONTROL STRUCTURES

A loop control structure may be classified either as the entry-controlled loop or as the exit-controlled

loop. Both control structures are described in the following sections.

Entry-controlled loop

In the entry-controlled loop, the control conditions are tested before the start of the loop execution. It

the conditions are not satisfied, then the body of the loop will not be executed. The flowchart of entry-

controlled loop is shown in below:

Lesson-1

http://searchcio-midmarket.techtarget.com/definition/instruction
http://searchcio-midmarket.techtarget.com/definition/instruction

School of Science and Technology DCSA Program

62

Figure 5.1.1: Entry-controlled loop structure

Exit-controlled loop

In the exit-controlled loop, the control conditions are tested at the end of the body of the loop. As result

the body is executed unconditionally for the first time. The flowchart of exit-controlled loop is shown

in below:

Figure 5.1.2: Exit-controlled loop structure

A loop control structure may be classified either as the entry-controlled loop or as the

exit-controlled loop.

LOOPING PROCESS

Usually in a looping process, would include the subsequent four steps:

1. Setting and initialization of a counter variable.

2. Execution of the statements in the loop.

3. Test for a specified conditions for execution.

4. Increment or decrement the counter variable.

Input Entry

Body of the loop

 Test

Condition

Test

Condition

Input Entry

Body of the loop

False

True

Running

True

False

School of Science and Technology DCSA Program

63

The programming C language provides three loops for performing loop operation, which are as

follows: (i) while loop, (ii) do-while loop, and (iii) for loop. We will briefly describe above loops in

the later lessons one by one.

Summary

Summary

In this lesson

 We have learned about C loop control structure.

 Moreover we have learned how to design entry-controlled and exit-controlled loop structure

flow chart.

Assessment

Assessment

Fill in the blanks

1. A loop is a …………instruction(s).

2. A loop statement ……….. us to execute a statement or …………. several

times.

Multiple Choice Questions (MCQ)

1. a loop is a sequence or arrangement of

a) Variables b) Constants c) Instructions d) None of these

2. In looping, a sequence of statements are executed until-

a) Some conditions for end of the

loop are satisfied

b) Only one conditions for end of

the loop are satisfied

c) Some variables for end of the

loop are satisfied

d) None of these

3. In the entry-controlled loop, the control conditions are tested

a) Before the start of the loop execution

b) After the start of the loop execution

c) Middle of the loop execution

d) End of the loop execution

4. In the exit-controlled loop, the control conditions are tested

a) At the end of the body of the loop

b) After the start of the loop execution

c) Before the start of the loop execution

d) None of these

Exercises

1. What is loop? Mention the major benefit of using loop in programming language.

2. Explain the loop control structures with flowchart.

3. Mention the looping process steps.

Activity

1. Mention the significance of using loop in C language by your own concept.

 ……………………………….……………………………………………………..

 ……………………………………………………………………………………...

 …………………………..………………………………………………………….

http://searchcio-midmarket.techtarget.com/definition/instruction

School of Science and Technology DCSA Program

64

 Understanding While Loop

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define the while loop.

 Explain the while loop with syntax.

 Explain the while loop flowchart and example.

Keywords Program, Loop, While loop, Syntax, Flowchart

THE WHILE LOOP

We have already learned that loops are used in programming to repeat a specific block until some end

condition is met. While loop is simple loop in C. A while loop in C programming repeatedly executes

a target statement as long as a given condition is true. The basic form or syntax of while loop is as

follows:

 while(Test-condition)

{

 Body of the loop or statement(s);

}

Here, body of the loop or statement(s) may be a single statement or a block of statements. The Test-

condition may be any expression, and true is any nonzero value. The while loop is an entry-controlled

loop.The Test-condition is evaluated and if the condition is true then the body of the loop or statements

Figure 5.2.1: Flowchart of while loop

Lesson-2

Test

Condition

Input Entry

Body of the loop

False

True

School of Science and Technology DCSA Program

65

are executed. After execution of the body of the loop, the Test-condition is once again evaluated and it

is true, the body of the loop is executed again. This process is repeated until the Test-condition finally

becomes false and the programs control is transferred out of the loop. Finally we can say that, in while

loop Test-condition is tested before the body of the loop is executed. The flowchart of while loop is

shown in figure 5.2.1. Here, the important point is noted that a while loop might not execute at all, when

the Test-condition is tested and the result is false, body of the loop will be skipped and the next

statement after the while loop will be executed.

A while loop in C programming repeatedly executes a target statement as long as a

given condition is true.

Program 5.2.1 write a C program that prints 10 to 15 using while loop

#include <stdio.h>

#include <conio.h>

void main ()

 {

 int a = 10;

 while(a <16)

 {

 printf("value of a: %d\n", a);

 a++;

 }

 getch();

}

……………………………………………………………………………….

Output

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Program 5.2.2 write a C program to find out factorial value of a given integer number using while

loop

#include <stdio.h>

void main()

{

 int number;

 long int factorial;

 printf("Enter an integer Number: ");

 scanf("%d",&number);

 factorial = 1;

 while (number > 0)

 {

 factorial = factorial * number;

 --number;

 }

 printf("Factorial value is = %ld", factorial);

School of Science and Technology DCSA Program

66

}

…………………………………………………………………………….……….

Output

Enter an integer Number: 6

Factorial value is = 720

Enter an integer Number: 10

Factorial value is = 3628800

Program 5.2.3 write a C program that prints only odd numbers from 1 to 30 using while loop

#include <stdio.h>

#include<conio.h>

void main ()

{

 int a = 1;

 printf("Odd Numbers Till 30 are: \n");

 while(a < 30)

 {

 printf("%d \t", a);

 a+=2;

 }

 getch();

}

…………….………………………………………………………………..

Output

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

A while loop might not execute at all, when the Test-condition is tested and the result

is false, body of the loop will be skipped and the next statement after the while loop will

be executed.

Activity

1. What will be the output of the following code segment

#include <stdio.h>

#include <conio.h>

void main ()

 {

 int p = 5;

 while(p >20) {

 printf("value of a: %d\n", p); p++;

 }

 printf(" Hello Good day!!");

}

2. Find out errors from the following code segment

void main ()

 {

 int p = 5;

 while p =5 ;

 {

 printf("%d\n", a); p;

 }printf(" Hello Good day!!");

 }

School of Science and Technology DCSA Program

67

Summary

Summary

In this lesson

 We have learned about C while loop with its syntax.

 We have also learned how a while loop works in program.

ASSIGNMENT

Assignment

1. Write a C program that find out the odd and even numbers from N integer numbers

using while loop.

……………………………………………………………………………………

………………………..…………………………………………………………..

2. Write a C program to print the result of the equation yx using while loop.

……………………………………………………………………………………

…………………………………………………………………………………….

Assessment

Assessment

Write “T” for true and “F” for false the following sentences:

1. A while loop in C programming repeatedly executes a target statement as long as a

given condition is false.

2. In while loop Test-condition finally becomes true and the programs control is

transferred out of the loop.

Multiple Choice Questions (MCQ)

1. In while loop body of the loop or statement(s) may be

a) A single statement or a block of

statements

b) Only single statements

c) Only two blocks d) None of these

2. A while loop in C programming repeatedly executes a target statement as long as a

given

a) Condition is true.

b) Condition is false

c) Both true and false is possible

d) None of these

3. In while loop when the Test-condition is tested and the result is false, body of the

loop will be-

a) Printed b) Terminated c) Executed d) Skipped

Exercises

1. What is while loop? Mention the major benefit of using while loop in programming language.

2. Explain the while loop control structures with flowchart.

3. Write a C program to calculates the power value of equation P=2N using while loop.

4. Write a C program to find out the value of following series using while loop:

Y= 11+23+35+………………………………….Nn

School of Science and Technology DCSA Program

68

 Understanding Do-While Loop

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define do-while loop.

 Explain the do-while loop with syntax.

 Explain the do-while loop flowchart and example.

Keywords Program, Loop, Do-while loop, Syntax, Flowchart

THE DO-WHILE LOOP

We have learned that, in while loop a Test-condition is tested before body of the loop is executed.

Consequently, if the Test condition is not satisfied at the first time, then the body of the loop may not

be executed at all. But in some situations it might be necessary to execute the body of the loop or

statement(s) before the test is executed. Such circumstances can be handled with the help of do-while

loop. The general syntax of do-while loop is as follows:

do

 {

 Body of the loop or statement(s);

 }while(Test-condition);

In do-while loop, the program proceeds to evaluate the body of the loop or statement(s) first. In this

loop, the Test-condition in while statement is evaluated at the end of the loop.

Figure 5.3.1: Flowchart of do-while loop

If the Test-condition is true, the program continues to evaluate the body of the loop once again. This

process continues as along as the Test-condition is true. If the Test-condition is false, the loop will be

Lesson-3

Body of the

loop

Test

Condition

True

False

Input Entry

School of Science and Technology DCSA Program

69

terminated and program control goes to the statement that appears after while statement A do...while

loop is similar to a while loop, but the point that it is exit-controlled loop and therefore the body of the

loop is always executed at least one time. The flowchart of do-while loop is shown in figure 5.3.1.

In do-while loop, the program proceeds to evaluate the body of the loop or statement(s)

first. In this loop, the Test-condition in while statement is evaluated at the end of the

loop

Program 5.3.1 Write a program to calculate the average of N numbers and display the result

using do-while loop.

#include<stdio.h>

#include<conio.h>

void main ()

{

 int number, count =1;

 float x, average, sum = 0.0;

 printf("How Many Numbers?:");

 scanf("%d",&number);

 do

 {

 printf(" Enter the %d Number = ",count);

 scanf("%f",&x);

 sum = sum + x;

 ++count;

 }while(count < = number);

 average = sum/number;

 printf("\n The average is: %f",average);

 getch();

}

…………………………………………………………………………….

Output

How Many Numbers?: 3

Enter the 1 Number =10

Enter the 2 Number =20

Enter the 3 Number =30

The average is: 20.000000

Program 5.3.2 Write a C program that convert a line of lowercase text to Uppercase text using

do-while loop.

#include<stdio.h>

#include<conio.h>

#include<ctype.h>

#define EOL '\n'

void main ()

{

 char letter[80];

 int value,count=-1;

 printf("Type text or line as lowercase:\n");

 do

 {

 ++count;

School of Science and Technology DCSA Program

70

 }while((letter[count] = getchar())!= EOL);

 value = count;

 count=0;

 do

 {

 putchar(toupper(letter[count]));

 ++count;

 }while(count < value);

 getch();

}

………………………………………………………………………………

Output

Type text or line as lowercase:

i am a man. i read in bangladesh open university

I AM A MAN. I READ IN BANGLADESH OPEN UNIVERSITY

Program 5.3.3 Write a C program that print the multiplication table of 5 from 1 to 10 using do-

while loop.

#include<stdio.h>

#include<conio.h>

void main()

{

 int value=1;

 printf("Multiplication Table of 5 from 1 to 10:\n");

 do

 {

 printf("5 * %d = %d\n",value,5*value);

 value++;

 }while(value<=10);

 getch();

}

……………………………………………………………………………….

Output

Multiplication Table of 5 from 1 to 10:

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

Activity

1. What will be the output of the following code segment:

#include<stdio.h>

void main()

{

 int value=2;

School of Science and Technology DCSA Program

71

Summary

Summary

In this lesson

 We have learned about C do-while loop with its syntax.

 We have also learned how a do-while loop works in program.

ASSIGNMENT

Assignment

1. Write a C program that display factorial value of n number using do-while loop.

………………………………………………………………………………..

………………………………………………………………………………..

Assessment

Assessment

Write “T” for true and “F” for false the following sentences:

1. In do-while loop, the program proceeds to evaluate the body of the loop or

statement(s) first.

2. If the Test-condition is false in do while loop, the program continues to

evaluate the body of the loop once again.

Exercises

1. What is do while loop? Mention the major benefit of using do while loop in programming

language.

2. Explain the do while loop control structures with flowchart.

 do

 {

 printf("6 * %d = %d\n",value,6*value);

 value++;

 }while(value <= 6);

}

School of Science and Technology DCSA Program

72

 Understanding For Loop

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define the for loop.

 Explain the for loop with syntax.

 Explain the for loop flowchart and example.

Keywords Program, Loop, For Loop, Syntax, Flowchart

FOR LOOP

We have learned in previous lesson about while and do-while loops. The for loop is the third and most

commonly used loop in C program. It is another entry-controlled loop that delivers shorter loop control

structure. The for loop is a recurrence control structure that allows us to proficiently write a loop that

needs to perform an exact number of times.

The general form or syntax of for loop is as follows:

for(initialization; Test-condition; increment/decrement)

 {

 Body of the loop or statements;

 }

The execution procedure of for loop is described below:

1. In loop, the initialization step is performed first, and only once. This stage allows us to

announce or declare and initialize any loop control variables. We are not necessary to put a

statement here, as long as a semicolon appears. Initialization of control variable using

assignment operator such as i=1, count=0, value=1 etc. These initialization variables are

known as loop control variable.

2. Next, the Test-condition is evaluated. Test-condition is a relational expression such as count

<=10 or I >20 etc. that determines when the loop will exit. If Test-condition is true, then the

body of the loop is executed. If Test-condition is false, the body of the loop does not execute

and the flow of control jumps to the next statement just after for loop.

3. After execution of the body of the for loop, the flow of control jumps back up to the

increment/decrement statement. This statement allows us to update (i.e., increment or

decrement) any loop control variable.

4. After control variable updated (i.e., increment or decrement), the Test-condition is now

evaluated again. If Test-condition is true, the loop executes and the process repeats itself and

if the Test-condition becomes false, the for loop terminates.

Lesson-4

School of Science and Technology DCSA Program

73

The execution procedure is shown clearly as follows

for(initialization; Test-condition; increment/decrement)

 {

 Body of the loop or statements;

 }

The flowchart of for loop is shown in bellow:

Figure 5.4.1: Flowchart of for loop

The for loop is a recurrence control structure that allows us to proficiently write a loop

that needs to perform an exact number of times

Program 5.4.1 Write a C program that display 1 to 10 using for loop.

#include<stdio.h>

#include<conio.h>

void main()

{

 int i;

Initialization

Test

Condition

Body of the loop or

Statements

Increment/decrement

True

False

Exit

School of Science and Technology DCSA Program

74

 for(i=1;i<=10;i= i+1)

 {

 printf("%d\t",i);

 }

 getch();

}

…………………………………………………………………………..

Output

1 2 3 4 5 6 7 8 9 10

Program 5.4.2 Write a C program that calculate the value of the following series using for loop

Y=1+3+5+7+……………………………………………………………………N.

#include<stdio.h>

#include<conio.h>

void main()

{

 int i, N, sum=0;

 printf("Enter the value N of series: ");

 scanf("%d",&N);

 printf("\nThe Total value of series is: ");

 for(i=1;i<=N; i=i+2)

 {

 sum=sum+i;

 }

 printf("%d",sum);

 getch();

}

……………………………………………………………………………

Output

Enter the value N of series: 10

The Total value of series is: 25

Program 5.4.3 Write a C program that calculate the value of the following series using for loop

Y=12+32+52+72+……………………………………………………………………N2.

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 long int i, N, sum=0;

 printf("Enter the value N of series: "); scanf("%ld",&N);

 printf("\nThe Total value of series is: ");

 for(i =1;i<=N; i=i+2)

 {

 sum=sum+pow(i,2);

 }

 printf("%ld",sum); getch();

}

…………………………………………………………………………..

Output

School of Science and Technology DCSA Program

75

Enter the value N of series: 20

The Total value of series is: 1330

NESTING OF FOR LOOP

C programming allows us to use one loop inside another loop. Nesting of loops, that is one for loop

within another for loop statement. This process is called nesting of for loop. Tow loops can be nested

as follows:

 for (initialization; Test-condition; increment/decrement)

 {

 for (initialization; Test-condition; increment/decrement)

 {

 Body of the loop or statement(s);

 }

 Body of the loop or statement(s);

 }

Program 5.4.4 Write a C program that print the following pattern using nested for loop.

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

#include<stdio.h>#include<conio.h>#include<math.h>

void main()

{

 int row,col;

 for(row=1;row<=6;row++)

 {

 for(col=1;col<=row;col++)

 {

 printf("%d ", col);

 }

 printf("\n");

 }getch();

}

……………………………………………………………………………

Output

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

Nesting of loops, that is one for loop within another for loop statement. This process is

called nesting of for loop

Inner

loop

Outer loop

School of Science and Technology DCSA Program

76

1 2 3 4 5 6

Program 5.4.5 Write a C program that print the following pattern using nested for loop.

*

* *

* * *

* * * *

* * * * *

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 int row,col,j,space=5;

 for(row=0;row<5;row++)

 {

 for(col=0;col<space;col++)

 {

 printf(" ");

 }

 for(j=0;j<=row;j++)

 {

 printf("* ");

 }

 printf("\n");

 space--;

 }

 getch();

}

……………………………………………………………………………

Output

*

* *

* * *

* * * *

 * * * * *

Program 5.4.6 Write a C program that print all prime numbers from 1 to N range using nested

for loop.

#include <stdio.h>

void main ()

{

 int i, j,N;

 printf("Enter the value of range N: ");

 scanf("%d",&N);

 for(i = 1; i<N; i++)

 {

 for(j = 2; j <= (i/j); j++)

 if(!(i%j)) break;

 if(j > (i/j))

 printf("%d is prime\n", i);

 }

School of Science and Technology DCSA Program

77

}

…………………………………………………………………………..

Output

Enter the value of range N: 20

1 is prime

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

Summary

Summary

In this lesson

 We have learned about C for loop with its syntax.

 We have also learned how a for loop works in program.

ASSIGNMENT

Assignment

1. Write a C program that display factorial value of n number using for loop.

………………………………………………………………………………..

………………………………………………………………………………..

2. Write a program that print the result of the following series:

 Y= 1+x+x2+x3+x5+……………………………………..xn

Activity

1. Analyze each of the program segments that follow and determine how many times

the body of each loop will be executed:

i. int i;

for(i=0;i<=8; i=i+2/5)

{

 ……………………

}

ii. int m=10, n=7;

while(m%n>=0)

{ …………………..

 m=m+1;

 n=n+2;

}

2. Find errors, if any in each of the following looping segments:

i. for(x=1,x>10;x=1)

{

 printf(“ %d test”);

 ………………………..

}

ii. for (p=10;p>0;)

p=p-1;

printf(“%f”,&p);

School of Science and Technology DCSA Program

78

Assessment

Assessment

Write “T” for true and “F” for false the following sentences:

1. In for loop, the initialization step is performed first, and infinite.

2. In for loop Test-condition is an assignment expression.

3. The for loop is a recurrence control structure.

4. In for loop if Test-condition is false, then the body of the loop is executed.

Multiple Choice Questions (MCQ)

1. In for loop initialization of control variable using-

a) Assignment

operator

b) Relational

operator

c) Logical

operator

d) None of these

2. For loop is another-

a) Entry-controlled loop that delivers shorter loop control structure.

b) Exit- controlled loop that delivers shorter loop control structure.

c) Exit- controlled loop that delivers longer loop control structure.

d) None of these

3. After execution of the body of the for loop, the flow of control-

a) Jumps back up to the increment/decrement statement.

b) Jumps down up to the increment/decrement statement.

c) Jumps back up to the assignment statement.

d) Jumps back up to the test-control statement.

Exercises

1. What if for loop? Discus with its syntax

2. Distinguish among while, do-while and for loop with an example

3. Describe for loop flowchart with an example.

4. Write a C program that prints the following pattern using for loop

 A

 A A

 A A A

 A A A A

 A A A A A

5. Write a C program that prints the following pattern using for loop:

 1

 2 3

 3 4 5

 4 5 6 7

6. Write a C program that prints the following pattern using for loop

 1

 2 2

3 3 3

 4 4 4 4

7. Write a C program to evaluate the following investment equation:

 V= P(1+r)n

School of Science and Technology DCSA Program

79

 Understanding Break And Continue Statements

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define break statement.

 Define continue statement.

 Explain uses of break and continue statements in program.

Keywords Program, Break, Continue, Statement, Exit, Flowchart

JUMPING PROCESS IN LOOPS

We have already known loops are used to perform a set of operations repeatedly until the control

variable fails to satisfy the test condition. The number of periods a loop is repeated is decided in advance

and the test condition is written to accomplish this goal. In most cases, when performing a loop it

becomes necessary to skip a part of the loop or leave the loop as soon as a certain condition happens.

Programming C permits jump from one statement to another within a loop as well as jump out of the

loop. So it is necessary to skip some statements inside the loop or terminate the loop immediately

without checking the test condition. In such cases, break and continue statements are used. These

statements are described below with program.

BREAK STATEMENT

The break is a built-in keyword in C. The break statement allows us to departure a loop from any point

within its body, avoiding its regular termination process or expression. In practical, when the break

statement is encountered inside a loop, the loop is immediately terminated, and program control resumes

at the next statement following the loop. We have seen the use of break statement in switch statement.

The general format of break statement is simply:

break;

When loops are nested, the break would only exit from the loop containing it. This means that break

will exit only a single loop. The break statement can also be used in while, do-while, and for loops. The

use of break statement procedure is illustrated in figure 5.5.1.

while(Test-condition)

 {

 ……………

 ……………

 if(condition)

 break;

 …………

 }

……………………

(a) break in while loop

do

 {

 ………………

 if(condition)

 break;

 ……………….

 ……………….

 }while(Test-condition);

…………………………

(b) break in do-while

Lesson-5

School of Science and Technology DCSA Program

80

for(init, Test-condition; increment)

 {

 ………………..

 ……………….

 if(condition)

 break;

 ……………

 ……………

 }

………………………

(c) break in for loop

for((init, Test-condition; increment)

{

 …………………………

 …………………………

 for(init, Test-condition; increment)

 {

 ………………..

 ……………….

 if(condition)

 break;

 ……………

 ……………

 }

 ………………..

}

(d) break in nested for loop

Figure 5.5.1 break used in while, do-while and for loops

The flowchart of break statement is shown in below:

Figure 5.5.2: Flowchart of break statement

Program 5.5.1 Write a C program that calculates sum and average until user enters positive

number. When enter negative number program will be terminated.

include <stdio.h>

#include<conio.h>

void main()

{

 int i;

 float number, sum = 0.0, average=0.0;

When the break statement is encountered inside a loop, the loop is immediately

terminated, and program control resumes at the next statement following the loop

Remaining body of

loop

Test condition

of loop

con

True

Entry loop

break?

con

No

Yes

Exit loop

False

School of Science and Technology DCSA Program

81

 printf("The program calculates maximum 10 Numbers.\n");

 printf("The program will terminate, if enter negative number.\n");

 for(i = 1; i <= 10; ++i)

 {

 printf("Enter a n%d: ",i);

 scanf("%f",&number);

 /* If user enters negative number, loop is terminated*/

 if(number < 0.0)

 break;

 sum + = number;

 }

 average = sum/(i-1);

 printf("Total Sum = %.2f\n",sum);

 printf("Average is = %.2f",average);

getch();

}

…………………………………………………………………………….......

Output

The program calculates maximum 10 Numbers.

The program will terminate, if enter negative number.

Enter a n1: 10

Enter a n2: 20

Enter a n3: 30

Enter a n4: -3

Total Sum = 60.00

Average is = 20.00

Program 5.5.2 Write a C program that takes numbers from user until enter 15.

include <stdio.h>

#include<conio.h>

void main()

{

 int number ;

 printf("Enter numbers one by one :");

 for (; ;)

 {

 scanf("%d" , &number) ;

 if (number = =15)

 break ;

 }

printf("Your last Entered number is: %d \n",number);

printf("End of an infinite loop...\n");

getch();

}

…………………………………………………………………………………

Output

Enter numbers one by one :10

100

456

789

15

Your last Entered number is: 15

School of Science and Technology DCSA Program

82

So End of an infinite loop...

CONTINUE STATEMENT

The continue is a built-in keyword in C. Throughout the loop operations, it may be essential to skip a

part of the body of the loop under certain conditions. Like break statement C supports another statement

called the continue statement. The continue statement is used to avoid the remainder of the current

pass through a loop. However, when a continue statement is encountered, then the loop does not

terminate. This means that, the continue statement causes the loop to be continued with the next

iteration after skipping any statements in between. Actually, continue statement tells the compiler “Skip

the following statements and continue with the next iteration.” The general format of continue statement

is:

continue;

The continue statement is also used in different types of loops like while, do-while and for loops. The

use of continue statement in different loops are illustrated in following 5.5.3 figure. The continue

process is shown with an arrow line in figure 5.5.3.

 while(Test-condition)

 {

 ……………

 ……………

 if(condition)

 continue;

 ……………

 ……………

 }

(a) continue in while loop

 do

 {

 …………………

 …………………

 if(condition)

 continue;

 ……………….

 ……………….

 }while(Test-condition);

(b) continue in do-while loop

 for(initialization, Test-condition; increment)

 {

 ………………..

 ……………….

 if(condition)

 continue;

 ……………

 ……………

 }

(c) continue in for loop

Figure 5.5.3: Uses of continue in different types of loops

In while and do-while loops, continue causes the control to go directly to the Test-condition and then

to continue the iteration process, on the other hand in for loop, the increment/decrement section of the

loop is performed before the Test-condition is assessed.

break?

con

School of Science and Technology DCSA Program

83

The flowchart of continue statement is shown in below:

Figure 5.5.4 Flowchart of continue statement

Program 5.5.3 Write a C program that calculate sum of maximum 10 numbers. Negative

numbers are skipped from calculation.

#include <stdio.h>

#include<conio.h>

void main()

{

 int i;

 float number, sum = 0.0;

 printf("Enter 10 Numbers.\n");

 printf("Negative number is skipped from calculation.\n");

 for(i=1; i <= 10; ++i)

 {

 printf("Enter a number n%d: ",i);

 scanf("%f",&number);

 /*If user enters negative number, loop is terminated*/

 if(number < 0.0)

 {

 continue;

 }

 sum += number;

 }

 printf("Total Sum = %.2f",sum);

 getch();

}

………………………………………………………………………………….

continue statement tells the compiler “Skip the following statements and continue with

the next iteration”

Remaining body of

loop

Test condition

of loop

con

Entry loop

continue?

con

True

Yes

No
Exit loop

False

School of Science and Technology DCSA Program

84

Output

Enter 10 Numbers.

Negative number is skipped from calculation.

Enter a number n1: 10

Enter a number n2: 20

Enter a number n3: -90

Enter a number n4: 40

Enter a number n5: 50

Enter a number n6: 46

Enter a number n7: 78

Enter a number n8: 90

Enter a number n9: 34

Enter a number n10: 23

Total Sum = 391.00

Activity

1. what will be the output of the following program segment:

#include <stdio.h>

#include<conio.h>

void main()

{

 int i=0,x=0;

 for(i=1;i<10;++i)

 {

 if(i%2==1)

 x+=i;

 else

 x--;

 printf("%d ",x);

 break;

 }

 printf("\nx=%d",x);

}

2. what will be the output of the following program segment:

#include <stdio.h>

#include<conio.h>

void main()

{

 int i = 0,j,x = 0;

 for(i = 0;i<5;++i)

 {

 for(j = 0;j<i;++j)

 x += (i + j - 1);

 printf("%d ",x);

 break;

 }

 printf("\nx = %d",x);

}

3. what will be the output of the following program segment:

void main()

{

School of Science and Technology DCSA Program

85

Summary

Summary

In this lesson

 We have learned about break statement with its syntax.

 We have also learned about continue statement with its syntax.

ASSIGNMENT

Assignment

1. What will be the output of the following program

#include <stdio.h>

#include<conio.h>

void main(){

 int i,j,k,x=0;

 for(i=0;i<5;++i){

 for(j=0;j<i;++j){

 switch(i+j-1){

 case -1:

 case 0:

 x+=1; break;

 case 1:

 case 2:

 case 3:

 x+=2;

 default:

 x+=3;

 } printf("%d",x);

 } printf("\nx=%d",x);}

}

Assessment

Assessment

Write “T” for true and “F” for false the following sentences:

1. C permits jump from one statement to another within a loop as well as jump

out of the loop.

2. The break statement allows us to exit a loop from any point within its body.

3. When the break statement is encountered inside a loop, the loop is immediately

terminated.

 int i=0,x=0;

 for(i=1;i<10;++i)

 {

 if(i%2 = =1)

 x+=i;

 else

 x--;

 printf("%d ",x);

 continue;

 }

 printf("\nx=%d",x);

}

School of Science and Technology DCSA Program

86

4. In while and do-while loops, continue causes the control to go directly to the

Test-condition.

Multiple Choice Questions (MCQ)

1. When loops are nested, the break would only-

a) Exit from the loop containing it

b) Continue from the loop containing it

c) Nested from the loop containing it

d) None of these

2. The break statement allows us to departure a loop from any point within

its body-

a) avoiding its regular termination process or expression

b) permitting its regular termination process or expression

c) exit from the loop containing it

d) continuing its regular termination process or expression

3. The continue statement tells the compiler-

a) Continue the following statements and skip with the next iteration

b) Skip the following statements and continue with the next iteration

c) Test the following statements and continue with the next iteration

d) None of these

Exercises

1. Why are break and continue statements used in program?

2. Mention the benefits of break statement with its flowchart.

3. Explain the uses of break statement in different types of loops.

4. Explain the uses of continue statement in different types of loops.

5. Describe distinguish between break and continue statement with an example.

School of Science and Technology DCSA Program

87

 Understanding goto Statement

Learning Outcomes

Outcomes

Upon completion of this lesson you will be able to

 Define goto statement with syntax.

 Explain the uses of goto statement.

Keywords Program, goto, Statement, Exit, Flowchart

GOTO STATEMENT

In the previous lessons, we have already learned the uses of different types of statements those are used

to directly exit or continue the execution of statements in different types of loops. Another statement

that is used in C program to transfer the control one place to another place of a program is known as

goto statement.

The goto statement is used to change the normal sequence of C program execution by transferring

control to any place of the program. Since, the goto statement can transfer the program control to any

place in a program, so it is convenient to provide branching within a loop.

This statement is also used to exit from deeply nested loops when an error occurs. Actually, goto

statement provides an unconditional jump from the 'goto' to a labeled statement in the same function.

The general form or syntax of goto statement is:

goto Label_name;

Here, Label_name is an identifier that is used to label the target statement to which control will be

transferred. The Label_name can be any ordinary text except C keyword and it can be set anyplace in

the C program.

An important note that, target statement must be labeled and Label_name must be followed by a colon

(:). Therefore the target statement will seem as:

Label_name:

 Statement(s);

Every labeled statement within the program must have a unique label, which is no two statements can

have the same label. Jumping within and exiting from the loops with goto statement is shown in

following figure 5.6.1.

Target statement

Lesson-6

School of Science and Technology DCSA Program

88

 while(Test-condition)

 {

 if(condition-error)

 goto stoplebel;

 ………………

 if(condition)

 goto label1;

 ……………

 ……………

 label1:

 ……….....

 }

 stoplebel:

 ……………

 ……………

 for(int; Test-condition; increment)

 {

 …………………………..

 for(int; Test-condition; increment)

 {

 ……………………….

 if(error condition)

 goto Error;

 ………………………

 }

 ………………………..

 }

 Error:

 …………………….

 ……………………

Figure 5.6.1 Jumping within and exiting from the loops with goto statement

The flowchart of goto statement is shown in below:

Figure 5.6.2 flowchart of goto statement

Some goto programming examples are shown in below:

Program 5.6.1 write a C program that evaluate the following series using goto statement
𝟏

𝟏−𝒙
= 𝟏 + 𝒙 + 𝒙𝟐 + 𝒙𝟑 + … … … … … … … … … … … + 𝒙𝒏 for -1< x <1 to evaluate to 0.01 percent

accuracy. Goto statement is used to exit the loop.

The goto statement is used to change the normal sequence of C program execution by

transferring control to any place of the program

The use of goto statement is extremely discouraged in any programming language

because it makes tough to trace the control flow of a program, making the program hard

to understand and rigid to change. Any program that uses a goto can be redrafted to avoid

them

Jump

Within

Loop

Exit

from

Loop

Exit

From

two

Loops

Label 2 Statement(s) 2

Statement(s) 3

Label 1 Statement(s) 1

Label 3

Label 3

Rest of the code

School of Science and Technology DCSA Program

89

#include <stdio.h>

#include<conio.h>

#define Loop 100

#define accuracy 0.0001

void main()

{

 int n;

 float x,term,sum = 0.0;

 printf("Enter the value of x: ");

 scanf("%f",&x);

 for(term =1,n = 1;n <= Loop; ++n)

 {

 sum += term;

 if(term < = accuracy)

 goto output; /* Exit from loop*/

 term*=x;

 }

 printf("\n Final value of n is not sufficient \n");

 printf("To achieve desired accuracy\n");

 goto end;

 output:

 printf("\n Exit from loop \n");

 printf("SUM = %f; No. of terms = %d\n", sum,n);

 end:

 ;

}

……………………………………………………………………………...

Output

Enter the value of x: .21

 Exit from loop

SUM = 1.265800; No. of terms = 7

Enter the value of x: .75

 Exit from loop

SUM = 3.999774; No. of terms = 34

Program 5.6.2 write a C program that demonstrate the inner and outer loop using goto

statement.

#include <stdio.h>

void main()

{

 int p, q;

 for (p = 0; p < 5; p++)

 {

 printf("Outer loop executing. p = %d\n", p);

 for (q= 0; q < 2; q++)

 {

 printf(" Inner loop executing. q = %d\n", q);

 if (p == 5)

 goto stop;

 }

 }

School of Science and Technology DCSA Program

90

 /* This message does not print: */

 printf("Loop exited. p = %d\n", p);

 stop:

 printf("Jumped to stop. p = %d\n", p);

}

……………………………………………………………………………..

Output

Outer loop executing. p = 0

 Inner loop executing. q = 0

 Inner loop executing. q = 1

Outer loop executing. p = 1

 Inner loop executing. q = 0

 Inner loop executing. q = 1

Outer loop executing. p = 2

 Inner loop executing. q = 0

 Inner loop executing. q = 1

Outer loop executing. p = 3

 Inner loop executing. q = 0

 Inner loop executing. q = 1

Outer loop executing. p = 4

 Inner loop executing. q = 0

 Inner loop executing. q = 1

Loop exited. p = 5

Jumped to stop. p = 5

Summary

Summary

In this lesson

 We have learned about goto statement with its syntax.

 We have also learned how a goto statemet works in program.

Activity

1. what will be the output of the following program segment:

void main () {

 int num = 10;

 LOOP: do {

 if(num = = 15) {

 num = num + 1;

 goto LOOP;

 }

 printf("value of Num: %d\n", num);

 num++;

 }while(num < 20);

}

School of Science and Technology DCSA Program

91

ASSIGNMENT

Assignment

1. Write the importance of uses of goto statement in C program.

……………………………………………………………………………………

……………………………………………………………………………………

2. Find errors if any and correct them and mention the output of the following program

segment after correcting the errors:

void main ()

{

 int num = 10;

 TEST do{

 if(num = 14){

 num = + 2;

 goto;

 }

 printf("value of a: %d\n", num);

 num++;

 }while(test < 20)}

Assessment

Assessment

Write “T” for true and “F” for false the following sentences:

1. The goto statement is used to exit the normal sequence of C program execution.

2. The goto statement provides a conditional jump from the 'goto' to a labeled

statement in the same function.

3. The goto statement can transfer the program control to any place in a program.

Multiple Choice Questions (MCQ)

1. In goto statement the Label_name can be any ordinary text except C-

a) Keyword b) Expression c) Variable d) Constant

2. The goto statement is used to change the normal sequence of C program execution

by transferring-

a) Control to any place of the

program

b) Control to only specified place of the

program

c) Control to end of the program d) None of these

3. In goto statement every labeled statement within the program must have a

a) Different label b) unique label c) Multiple label d) None of these

4. The goto statement provides an unconditional jump from the 'goto' to a labeled

statement in the-

a) Same function b) Same constant c) Same variable d) Multiple function

Exercises

1. Why is goto statement used in programming C?

2. Mention the benefits of using goto statement in C.

3. Explain goto statement with its syntax and discuss its flowchart.

4. Describe the difference among break, continue and goto statements with proper example.

