
17 

Unit 2: Number Systems, Codes and 

Logic Functions 
 

Introduction  
 

A digital computer manipulates discrete elements of data and that these 

elements are represented in the binary forms. Operands used for 

calculations can be expressed in the binary number system. Other 

discrete elements including the decimal digits, are represented in binary 

codes. Data processing is carried out by means of binary logic elements 

using binary signals. Quantities are stored in binary storage elements. 

The purpose of this unit is to introduce the various binary concepts as a 

frame of reference for further study in the succeeding units 

 

Lesson 1 : Number Systems 
 

1.1 Learning Objective 
 

On completion of this lesson you will be able to :  

 

• describe  different number systems 

• identify decimal, binary and other numbers 

• explain different number systems with examples. 

 

1.2 Number Systems 
 

Any positive integer b>1 can be chosen as the base for a positional 

number system similar to the decimal system (b=10) or the binary 

system (b=2). Such a system uses b symbols for the integers 

 

   0, 1, 2, 3, ..., b-1 

  

These symbols are called the digits of the system. 

 

Any integer N is represented in the system by a sequence of base-b digits 

:      

 

   N = an an-1... a1 a0 

 

Then bk is the place value of ak, and  

 

  

N = an × b
n + an-1×b

n-1 + ... + a2 × b
2 + a1 × b

1 + a0  × b
0  

 

Number Systems 
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1.3 Decimal System 
 

Any positive integer N, represented in the decimal system as a string of 

decimal digits, may also be expressed as a sum of powers of 10, with 

each power weighted by a digit. For example, N = 8253 can be 

expressed as follows : 

 

8253  = 8×103 +2 ×102 +5 ×101 +3×100  

 = 8×1000+2×100+5×10+3×1 

 = 8000 + 200 + 50 +3 

 

 

The powers of ten, 

 

100 = 1   101 = 10      102 = 100  103 = 1000  ...  

 

which correspond respectively to the digits in a decimal integer as read 

from right to left, are called the place values of the digits. 

 

Any fractional value M, represented in the decimal system by a string of 

decimal digits together with an embedded decimal point, may also be 

expressed in expanded notation by using negative powers of 10. 

Specifically, the place values of the digits in M to the decimal point are 

respectively 

    

 10
-1 = 0.1  10

-2 = 0. 01 10
-3 = 0. 001  ... 

 

For example, M = 837.526 is expressed in expanded notation as follows: 

   

 837.526 = 8×102 +3×101+7×100 +5×10
-1 +2×10

-2 +6×10
-3 

               = 800+30+7 + 0.5 + 0.0 2 + 0. 006 

 

This decimal fraction is said to have three decimal places, the number of 

digits to the right of the decimal point. 
 

The arithmetic of decimal fractions is not very complicated; one has to 

keep track of the decimal points. 
   

1.4 Binary System 
 

Any binary number is therefore a sequence of bits, possibly with an 

embedded binary point. Those numbers that have no fractional part, i.e., 

are without an embedded binary point, are called binary integers. 
 

The place values in the binary system are the powers of the base b=2, 

just as the place values in the decimal systems are the powers of ten.  

 

Decimal System 
 

Binary System 
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Specifically, the place values of the integral part of a binary number are 

the nonnegative powers of two. 

 

 20 21 22  23 ... 

 

and the place values of the fractional part of a binary number are the 

negative powers of two, 

 

 2
-1 2

-2 2
-3 ... 

 

   

Table 1.1.  

 

Binary place values  Decimal values 

 

2
-4 

2
-3 

2
-2 

2
-1 

20 

21 

22 

23 

 

0.0625 

0.125 

0.25 

0.5 

   1 

   2 

   4 

   8 

 

 

1.5 Octal System 
 

 

Since 8 = 23, each octal digit has a unique 3-bit binary representation, 

given in Table 1.2.  

 

     Table 1.2  

 

Octal digit Decimal values Binary equivalent 

 

0 

1 

2 

3 

4 

5 

6 

7 

 

0 

1 

2 

3 

4 

5 

6 

7 

 

000 

001 

010 

011 

100 

101 

110 

111 

 

 

Octal System  
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The place values in the octal system are powers of 8; some of the these 

powers appear in Table 1.3. 

 

   Table 1.3 

 

Octal Place Values Decimal Values 

 

8
-3 

8
-2 

8
-1 

80 

81 

82 

83 

84 

85 

 

1/512 = 0.001953125 

  1/64 = 0.015625 

    1/8 = 0.125 

              1 

              8 

            64 

          512 

        4096 

      32768 

 

 

1.6 Hexadecimal System 
 

Since 16 =24, each hexadecimal digit has a unique 4-bit representation 

which is shown in Table 1.4. The place values in the hexadecimal 

system are the powers of 16, some of which are listed, along with their 

decimal values, in Table 1.5. 

    

         Table 1.4    Table 1.5 
 

Hexadecimal 

Digits 

Decimal  

Values 

Birnary 

Equivalents 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

  

0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

 

 

Hexadecimal System   
 

Hexadecimal 

Place Values 

 

Decimal Values 

 

16
-3
 

 

16
-2
 

16
-1
 

16
0
 

16
1
 

16
2
 

16
3
 

16
4
 

16
5
 

 

1/4096 = 

0.000244140625 

  1/256 = 0.00390625 

    1/16 = 0.0625 

                1 

              16 

            256 

          4096 

        65536 

     1048576 
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1. 7 Exercise 

 
1.  Multiple choice questions 

 

a. The place values in the decimal systems are the powers of  

 

i)    2 

ii)    8 

iii)  10 

iv)  16. 

 

b.  The place values of the fractional part of a binary number are the  

 

i)  nonnegative powers of 2 

ii)  negative powers of 2 

iii)  negative powers of 10 

iv)  negative powers of 8. 

 

c.  Each hexadecimal digit has a unique 

 

i)  2-bit binary representation 

ii)  3-bit binary representation 

iii)  4-bit binary representation 

iv)  5-bit binary representation. 

 

2.  Analytical  questions 

 

i)  How 625.536, 0.326, 735, 1278 can be expressed in expanded 

notation in respect of decimal system? 

ii) Identify the number of digit needed to express decimal, binary, 

octal & hexadecimal system. 

 

3.  Questions for short answers 

 

i)  What are the bases of binary, decimal, octal and hexadecimal 

numbers? 

ii)  Give binary values for hexadecimal number AF3. 
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Lesson 2 : Conversion  of  Numbers 
 

2.1 Learning Objective 
 

On completion of this lesson you will be able to : 

 

• identify the differences between different number systems 

• convert binary to decimal 

• convert decimal  to   binary 

• interconvert   hexadecimal-decimal 

• interconvert hexadecimal-binary. 

 

 

2.2 Binary-to-Decimal Conversion 
 

Any binary number can be written in expanded notation as the sum of 

each digit times that digit's place value. For example, 

 

 

110101  = 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 

 

 

101.110 = 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2
-1 + 1 × 2

-2 + 0 × 2
-3 

 

 

Since each power of two is weighted by either 0 or 1, the binary number 

is simply the sum of those place values in which the bit 1 appears. This 

sum at once gives us the decimal equivalent of the binary number.  

 

Table 1.6 lists the binary representations of the integers from 0 to 25, 

with the place of the bits shown at the top of the table. Sometimes a 

subscript 2 is used to distinguish a binary number, e.g. one may write 

1010112 if it is not clear from the context that 101011 is a binary number 

rather than a decimal number. Also, for easier reading, one sometimes 

separates a binary number into 4-bit groups, to the left and right of the 

binary point; e.g. 

 

 

10110100.011010 might be written 1011 0100.0110 10 
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Table 1.6 

 

Decimal Binary Number 

Number 16s  8s  4s  2s  1s 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

                        0 

                        1 

                   1   0 

                   1   1 

              1   0   0 

              1   0   1 

              1   1   0 

              1   1   1 

         1   0   0   0 

         1   0   0   1 

         1   0   1   0 

         1   0   1   1 

         1   1   0   0 

         1   1   0   1 

         1   1   1   0 

         1   1   1   1 

   1    0   0   0   0     

   1    0   0   0   1 

   1    0   0   1   0 

   1    0   0   1   1 

   1    0   1   0   0 

   1    0   1   0   1 

   1    0   1   1   0 

   1    0   1   1   1 

   1    1   0   0   0 

   1    1   0   0   1    

    

Example 2.1: 

 

(a)  To convert 1101012 to its decimal equivalent, write the appropriate 

place value over each bit and then add up those powers of two which 

are weighted by 1 :     

 
Place values 2

5
       2

4
        2

3
        2

2
         2

1
      2

0 

Binary number 1        1         0         1           0       1 

 

 

 

 

       

     

 

   Decimal equivalent 

 

 

1 

4 

16 

32 

53 
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(b)  To convert 101.11012 to its decimal equivalent, use Table 1.1 for 

the decimal values of the negative powers of two 
 

Place values       2
2
      2

1
         2

0         
2
-1
      2

-2
       2

-3
        2

-4
 

Binary number   1       0          1       1        1         0          1 

 

 

 

 

         

  

     

     

      Decimal equivalent                      
 

2.3 Decimal-to-Binary Conversion 
 

It is possible to find binary representation of a decimal number N by 

converting its integral part (NI), and its fractional part (NF) separately. It 

is illustrated with the decimal number  N = 109.78125. 
 

Example 2.2 
 

(a) To convert NI = 109 to binary equivalent, divide NI and each 

successive quotient by 2, noting the remainders, as follows : 
 

 Divisions      Quotients        Remainders 

 109 ÷ 2       54  1 

   54 ÷ 2     27  0 

   27 ÷ 2      13  1 

   13 ÷ 2          6   1 

     6 ÷ 2           3  0 

     3 ÷ 2          1  1 

     1 ÷ 2          0  1 
     

The zero quotient indicates the end of the calculations. The sequence of 

remainders from the bottom to up, as indicated by the arrow, yields the 

required binary equivalent. That is NI  = 109 = 11011012. 
 

In practice, the above divisions may be condensed as follows : 

     Remainders 

    2)109 

      2)54    1 

      2)27  0 

      2)13  1  

        2)6  1 

        2)3  0 

            1  1    

 

0.0625 
0.25 
0.5 

1 

Decimal-to-Binary Conversion  
 

4

58125.
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Here stop when the quotient, 1, is less than the divisor 2, since this last 

quotient will be next and last remainder. Again the arrow indicates the 

sequence of bits that gives the binary equivalent of the number.  

 

(b)  To convert NF = 0.78125 to its binary equivalent, multiply NF and 

each successive fractional part by 2, noting the integral part of the 

product, as follows : 

 

 Multiplications  Integral parts 

 0.78125 × 2 = 1.56250  1 

 0.5625 × 2   = 1.1250  1 

 0.125 × 2     = 0.250  0 

 0.25 × 2       = 0.50  0 

 0. 50 × 2      = 1.00  1 

 

The zero fractional part indicates the end of the calculations. It is 

observed that the integral part of any product can only be 0 or 1, since it 

is required to double number which is less than one. The sequence of 

integral-part digits from the top to down, as indicated by the arrow, 

yields the required binary equivalent. That is, NF = 0.78125 = 0.110012. 

 

 

In practice, the above multiplications may be condensed as follows : 

 

    0.781 25 

            ×2 

    1.562 50 

            ×2 

    1.125 00 

            ×2 

    0.250 00 

               × 2 

    0.500 00 

            ×2 

    1.000 00  

 

It is observed that the integral part of each product is underlined and 

does not figure in the next multiplication. Again the arrow indicates the 

sequence of integral or integral-part digits that give the required binary 

representation. 

 

It is found that the binary equivalents of the integral and fractional parts 

of the decimal number N = 109.78125. The binary equivalent of N is 

simply the sum of these two equivalents: 

 

  N = NI + NF = 1101101.11001 
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Example 2.3 :  

 

Let, N = 13.6875. Convert the integral part, NI = 13, and the fractional 

part, NF   = 0.6875, into binary forms : 

 

 Remainders  Integral parts 

 

2)13     0.6875 

  2)6  1         ×2 

  2)3   0   1.3750 

     1   1         ×2 

     0.7500 

           ×2 

     1.5000 

           ×2 

     1.0000 

      

 

Thus, N = 13.6875 = 1101.10112. 

 

Remark: The binary equivalent of a terminating decimal fraction does 

not always terminate. For example, convert N = 0.6 as above: 

 

 

 Multiplications Integral parts 

 0.6 × 2 = 1.2  1 

 0.2 × 2 = 0.4  0 

 0.4 × 2 = 0.8  0 

 0.8 × 2 = 1.6  1 

 

At this point in the procedure, one can again multiply 0.6 by 2. This 

means the above four steps will be repeated again and again. That is, 

 

  N = 0.6 = 0.1001 1001 1001 ...2 
 

(The number of bits which repeat is not always four; nor does the 

repeating block necessarily begin at the binary point, it depends on the 

given N.) 

 

2.4 Hexadecimal-Decimal Interconversion 
 

Conversion between the hexadecimal and decimal systems is 

accomplished via the algorithms of Section 2.3 with b = 16. There is an 

added difficulty in that one has to know how to handle the hexadecimal 

digits A, B, C, D, E and F. One can also convert from hexadecimal to 

decimal by decimal evaluation of the expanded hexadecimal form. 

 

Hexadecimal-Decimal Inter-

conversion  
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Example 2.4 : 

 

(a)  To convert 73D516 to its decimal equivalent, express the number in 

expanded  notation, change D to 13, and then calculate using 

decimal arithmetic. 

 

73D516    = 7×16
3 +3×162 +13×161 +5×160  

   = 7×4096+3×256+13×16 + 5×1 

   = 28672 + 768 + 208 +5 = 29653 

 

Alternatively, one can apply the conversion algorithm as follows : 

      

                7 

         ×16  

          112 

            +3 

          115 

          ×16 

         1840 

           +13 

         1853 

          ×16 

       29648 

             +5 

       29653 = 73D516 

 

(b) Convert 39.B816 to its decimal equivalent as follows : 

 

39.B816  = 3 × 16
1 + 9 × 160 + 11 × 16

-1 + 8 × 16
-2 

  = 3 × 16 + 9 × 1 + 11 × 0.0625 + 8 × 0.00390625 

               = 48 + 9 + 0.6875 + 0.03125 = 57.71875  

 

(c)  To convert the decimal number P = 9719 to its hexadecimal 

equivalent, divide P, and each successive quotient by the base b = 

16, noting the remainders, as follows :  

 

  Divisions Quotients  Remainders 

  9719 ÷ 16     607            7 

   607 ÷ 16                37     15   

     37 ÷ 16                  2                     5 

       2 ÷ 16         0                    2 

 

The sequence of remainders, which replaces the decimal  remainder 15 

by the hexadecimal digits F, in reverse order, gives the hexadecimal 

form for P; i.e. P = 25F716. 



Computer Basics 

 28  

(d)  To convert the decimal fraction Q = 0.78125 to its hexadecimal 

equivalent, apply the integral-part algorithm, with b = 16, as 

follows : 

 

 Multiplications  Integral parts 

   

0.78125 × 16 = 12.50000       12 

 0.50000 × 16 =   8.00000         8 

 

 

In this case a zero fractional part is reached. The sequence of integral 

parts, which replace the decimal 12 by the hexadecimal digit C, gives the 

required hexadecimal form for Q = 0.C816. 

 

(e)  To convert the decimal number N= 9719.78125 to its hexadecimal 

form, add the representations found in (c) and (d) : 

 

 N = P + Q = 25F7.C816 
 

Hexadecimal-Binary Interconversion 
 

This is accomplished exactly as octal-binary interconversion, except that 

4-bit equivalents are now involved. 

 

Example 2.5 : 

 

Convert to binary form (a) 3D5916, (b) 27.A3C16. 

 

 

Replace each hexadecimal digit by its 4-bit representation (Table 1.4) 

 

 

(a)     3 D 5 9 

    

    

     0011  1101  0101  1001 

 

      Hence, 3D5916  = 111101010110012. 

 

 

(b)     27.A3C  

 

 

   0010  0111  .  1010  0011  1100 

  

 Hence, 27.A3C16 = 100111�10100011112. 

 

Hexadecimal-Binary Inter-

conversion   
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Example 2.6 : 

 

Convert to hexadecimal form (a) 101101001011102, (b) 

11100.10110110112. 

  

Partition each binary number into 4-bit blocks to the left and right of the 

binary point adding 0s if necessary. Then replace each 4-bit block by its 

equivalent hexadecimal digit (Table 1.4). 

 

 

(a)    0010  1101  0010  1110 

 

    

               2 D 2 E 

 

  Hence, 2D2E16 is the required hexadecimal form. 

 

 

 

(b)    0001  1100.  1011  0110  1100 

 

    

                       1 C. B 6 C 

 

 Hence, 1C.B6C16 is the required hexadecimal form. 

 

 

 

2.5 Exercise 
 

1.  Multiple choice questions 

 

a.  The decimal equivalent of 11102 is 

 

i)  8  

ii)  10  

iii)  12  

iv)  14. 

 

b.  The decimal equivalent of 101102 is 

 

i)  15  

ii)  18  

iii)  22  

iv)  24. 
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c.  The binary equivalent of 109 is 

 

i)  1001102 

ii)  11110012 

iii)  11011012 

iv)  11101012. 
 

d.  The decimal equivalent of  25 F716 is 

 

i)  1719 

ii)  9610 

iii)  9719 

iv)  09919. 
 

2.  Analytical questions 

 

a.  Convert the following binary numbers to decimal equivalent. 
 

i)  101012 

ii)  1001012 

iii)  1011.1012 

iv)  101.11012. 

 
 

b.  Convert the following decimal numbers to binary 
 

i)  653.625 

ii)  13.6875 

iii)  367 

iv)  235.07. 

 

c.  Convert the following hexadecimal numbers to decimal 
 

i)  129A.B8616 

ii)  73D516 

iii)  0.782516 

iv)  39.C816. 

 

d.  Convert the following hexadecimal numbers to binary 
 

i)  129A.B8616 

ii)  3D5916. 
 

e.  Convert the following binary numbers to hexadecimal  
 

i)  101101001011102 

ii)  101101101110.10001102. 
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Lesson 3: Binary Arithmetic 
 

3.1 Learning Objective 
 

On completion of this lesson you will be able to : 

 

• add two binary numbers  

• multiply two or more binary numbers 

• subtract one binary number from another 

• do division of binary numbers.  

 

3.2 Binary Addition 
 

The execution of numerical calculations is essentially the same in all 

positional number systems. The addition of two binary numbers is 

accomplished according to the following three-step algorithm : 

 

Step 1.  Add the first (rightmost) column. 

 

Step 2.  Record the unit digit of the column sum. If the sum exceeds 

one, carry the two's digit 1, to the next column. 

 

Step 3.  If there are additional columns or if there is a carry from Step 

2, add the next column and repeat Step 2. Otherwise stop.   

 

The addition table for the binary digits 0 and 1 appears as Table 1.7 the 

only additional facts needed  for binary addition appear in Table 1.8. 

 

+ 0            1  0 + 0 = 0 

0 0            1   0 + 1 = 1 

1 1          10   1 + 0 = 1 

 1 + 1 = 0, with a carry of 1 

 1 + 1 + 1 = 1, with a carry of 1 

Table 1.7 Binary Addition  

 Table 1.8 Binary Addition Facts 

 

 

Example 3.1 :  

 

Evaluate the binary sum 

              111 Addend 

            +101 Augend 

 

by means of the three-step algorithm. 

 

 

Binary Addition    
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STEP 1: 1 + 1 = 0, with a carry of 1. 

STEP 2:  

            1  Carries 

          111  Addend 

       + 101  Augend 

              0 

STEP 3: 1+1 = 0, with a carry of 1. 

STEP 2. 

     11 Carries 

     111 Addend 

                   +101 Augend 

       00 

STEP 3: 1 + 1 + 1 = 1, with a carry of 1. 

STEP 2. 

     111 Carries 

       111 Addend 

                +101 Augend 

       100 

 

STEP 3: 1 + 0 =1. 

STEP 2. 

     111 Carries 

       111 Addend 

                 +101 Augend  

     1100 Sum 

 

Step 3. Stop. 

 

Example 3.4 : 

 

To calculate the binary product 1101011 × 10110 multiply 1101011 by 

the digits 0, 1, 1, 0 and 1 as follows : 

 

 

     1101011 

           ×       10110 

     0000000 

               1101011 

             1101011 

           0000000 

         1101011 

 

Then add the five bottom rows of numbers. In actual practice, one does 

not write down any zero products. Finally bring down initial zero, if any 

and form a running total, adding one nonzero row after another :  
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   1101011 Initial zero 

            ×    10110 

             11010110 First nonzero product 

             1101011  Second nonzero product 

      1010000010  Sum 

    1101011  Third nonzero product 

  100100110010  Final sum 

 

The final sum is the required product. Here it is extremely important to 

line up the numbers in the correct columns. 
 

3.3 Binary Subtraction  
 

Subtraction in the binary system can be performed using the following 

two-step algorithm:  
 

Step 1. If the lower (subtrahend) digit is greater than the upper 

(minuend) digit, borrow from the next column to the left. 
 

Step 2. Subtract the lower value from the upper value. 
 

In Step 1 ''borrowing" means appropriating, with no intention of paying 

back. 
 

The only subtraction facts needed for binary subtraction are the four 

listed in Table 1.9. 
 

The last entry comes from : 
 

   10 - 1 = 1 
 

That is, the difference 0 - 1 requires borrowing, which then yields 10 -1 

= 1.   

  Table 1.9 Binary subtraction facts 

  0 - 0 = 0 

  1 - 0 = 1 

  1 - 1 = 0 

  0 - 1 = 1, with a borrow of 1 from the next column 
 

Example 3.5 : 
 

To evaluate the binary difference 11101-1011, one could apply the 

subtraction facts in Table 1.5 and obtain. 

 

         11101 

         - 1011 

         10010 

 

Binary Subtraction     
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It is observed that 1 is borrowed from the third column because of the 

difference 0-1 in the second column. 

 

As with decimal subtraction, binary subtraction becomes more complex 

when a borrow is needed from a digit which is 0. Again, a borrow is 

taken from the first nonzero digit to the left, but now each intervening 0 

becomes 1 (as 10-1=1). 

 

 

Example 3.6 : 

 

Consider the difference  

    11000 

               -10011   

 

Obtain, 

    011 

              11000 

            - 10011 

       101 

 

Here a difference 0 - 1 occurs in the first column; hence it is required to 

borrow from the fourth column, where the first nonzero digit to the left 

appears, and the two intervening 0s become 1s.  

     

 

Example 3.7 :  

  

Calculate the difference 1100101001-110110110.  

 

    00110  01 

    1100101001 

    - 110110110 

      101110011 

 

3.4 Binary Division 
 

Recall that the division of decimal numbers can be reduced to 

multiplying the divisor by individual digits of the dividend and 

subtraction. 

 

Example 3.8 : 

 

 

Calculate 42558 ÷ 123. Here 123 is the divisor. The algorithm for 

division yields : 

 

Binary Division  
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     346 

            123)42558 

          369 

            565 

            492 

     738 

     738 

         0 

 

That is, multiply 123 by 3 and subtract the product, from 425; then 

multiply 123 by 4 and subtract the product 492, from 565; lastly multiply 

123 by 6 and subtract the product 738, from 738, to obtain a 0 

remainder. [Because of the geometry of the scheme, what these steps 

actually accomplish is first to subtract 3 × 102 times the divisor from the 

dividend, then 4 × 10 times the divisor from what is left, and then 6 

times the divisor from what is left. At that point the dividend is 

exhausted, showing that the dividend originally contained the divisor  

3 ×102 + 4 × 10 + 6 =346 times]. 

 

The above algorithm also works for binary division. In fact, multiplying 

the divisor by the only nonzero digit, 1, does not change the number; 

hence the algorithm for division reduces to repeated subtraction of the 

divisor (times a power of 2). 

 

 

Example 3.9 : 

 

Evaluate 1010001 ÷ 11. This gives 

 

    11011 

    11)1010001 

           11 

           100 

             11 

    100 

       11 

         11 

         11 

           0  

Thus the quotient is 11011. 

 

As in decimal division of integers, a remainder is possible when one 

binary is divided by another. Also, the division of binary fractions is 

handled the same way as the division of decimal fractions; that is, one 

converts the divisor to an integer by moving the binary point in both the 

divisor and the dividend the same the number of places. 
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Example 3.10 :  

 

Evaluate 1110111 ÷ 1001. Applying the usual division algorithm,  

 

     1101 

        1001)1110111 

     1001 

       1011 

       1001 

         1011 

         1001 

             10 

 

The quotient is 1101, with a remainder 10. 

 

 

3.5 Complements 
 

Arithmetic complements require in two separate but related situations. 

First of all, complements come up in storing numbers in the computer. 

While human-beings use the signs + and - to denote positive and 

negative numbers, the computer can process data only in terms of bits. 

Although it is possible to reserve a bit to denote the sign of a number 

(say, 0 for + and 1 for -), many computers store negative numbers in the 

form of their arithmetic complements. 

 

Complements also arise in the operation of subtraction. In fact, 

complements can be used to reduce subtraction to addition. This is 

especially useful as it avoids the possibility of repeated borrowing from 

one column to another.  

 

There are two types of complements, the one's complement and two's 

complement, respectively. 

 

A is a binary number, the one's complement of A is obtained by 

subtracting each digit of A from 1,  and the two's complement of A is its 

one's complement plus 1.  

 

 

Example 3.11 : 

 

Binary number:  111100001111  

One's complement: 000011110000  

Two's complement: 000011110001  

 

Complements   
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Observe that taking the ones complement simply inverts each digit, i.e. 0 

is replaced by 1 and 1 is replaced by 0. 

 

As in the decimal system, binary subtraction is performed by adding the 

radix-minus-one (one's) complement plus one or by adding the radix 

(two's) complement. 

 

 

Example 3.12 :  

 

 

Evaluate the difference Y = B - A, where  A = 10001110 and B = 

11110000. 

 

(a) First by ordinary binary subtraction : 

 

         011 

   11110000 B 

              -10001110 A 

   01100010 Y 

 

Observe that the borrowing was propagated to the third digit to the left. 

 

 

(b)  The one's complement of A is 01110001. Add this to B and then 

add 1: 

 

   11110000 B 

            + 01110001 One's complement of A 

           �01100001 

                 1  

   01100010 

 

(This method is also given the name end-around carry). 

 

 

(c)  The two's complement of A is 01110010. Add this to B: 

 

   11110000 B 

             +01110010 Two's complement of A 

           �01100010 

 

Deleting the 1 (which would be an overflow in an 8-bit register) gives 

the difference Y. 
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3.6  Exercise 

 

 
1.  Multiple choice questions 

 

a.  Addition in the binary system can be performed using  

 

i)  2 step algorithm 

ii)  3 step algorithm 

iii)  4 step algorithm 

iv)  5 step algorithm. 

 

b.  Complement arise in the operation of  

 

i)  addition 

ii)  subtraction 

iii)  multiplication 

iv)  conversion.  

 

 

2.  Analytical questions 

 

a.  Describe the three step algorithm with example.  

 

b.  Describe the 2-step algorithm. 

 

c.  Add the following binary numbers 

 

 i) 101102  and 11002 

 ii)1001012 and 101002. 

 

d.  Multiply the following numbers 

 

 i) 1000112   and 1012  

 ii)1012 and 10112. 

 

e.  Evaluate the following  

 

 i)  10010 - 11011 

 ii) 10101 - 00110 

 iii)11101 - 1011. 

 

f.  Evaluate the following  

 

 i) 11010011 ÷ 11 
 ii) 11110111 ÷ 1001. 
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g.  What do you understand by 1's complement and 2's complement 

method? 

 

h.  Find the 1's complement and 2's complement of the following 

numbers 

 

 i) 1011012 

 ii) 1111000011112 

 iii) 909010 

 iv) 10101012. 

 

i.  Perform following subtraction using 1's and 2's complement 

method 

 

 i)11011 - 10010  

 ii)10001110 - 11110000 

 iii) 10101 - 00110.  
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Lesson 4 : Data Representation and Codes  
 

4.1 Learning Objective  
 

On completion of this lesson you will be able to : 
 

• describe different methods of coding 

• know the definitions of data, information and code 

• describe different methods of data representation in computers 

• identify different representation of numbers in computers. 
 

4.2 Data Information and Codes 
 

‘Data’ are the names given to basic facts such as names and numbers. 

Examples are: unit price, quantity sold, times, dates, product, name, 

addresses, tax codes. 

 

Information is data which has been converted into a more useful form, 

i.e. processed facts. For example: total price = unit price × quantity sold. 
Here total price is information and unit price, quantity sold are data. 

Examples are: pay slips, receipts, reports. 

 

‘Codes’ are used to reduce the volume of data. The recording of data can 

be made less laborious, less prone to error and the data will subsequently 

be more manageable and easier to manipulate if standard abbreviations 

or simplified representations are used. This technique is called data 

coding. Examples: Yes/No answers on forms can be represented by 

single Y’s or N’s. A person's sex may be indicated by M or F. 
    

4.3 Data Representation 
 

Here discussion will be on how numeric data are represented inside the 

computer using straight binary coding, which encodes an entire number 

as a whole. Straight binary coding requires that numbers be stored in 

computer locations as a fixed number of bits. A list of bits so treated as a 

unit is called a word, and the number of bits is called the length of the 

word. For definiteness, assume, unless otherwise stated, that computers 

have words of fixed length 32. 

 

 

Integers Representation 
 

Integers or fixed-point numbers are numbers that have no decimal points. 

An integer J is represented in the memory of the computer by its binary 

form if J is positive, and by its 2's complement (i.e. the 2's complement 

of its absolute value) if J is negative. 

Example 4.1 :  

Data Information and Codes   
 

Integers Representation    
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The computer stores 423 = 1101001112 in a 32-bit memory location by 

introducing sufficient 0s at the beginning of the binary  form: 

 

 

0 0 0 0 0 ... 0 0 1 1 0 1 0 0 1 1 1 

 

 

The computer stores -423 in a memory location by taking the 1's 

complement of the above representation for 423 and then adding 1: 

 

 

1 1 1 1 1 ... 1 1 0 0 1 0 1 1 0 0 1 

 

 

In the first display the dots represent omitted 0s; in the second omitted 

1's. 

 

The computer can tell whether an integer J in memory is positive or 

negative by looking at the left most bit. If the first bit is 0, then J is 

positive; if the left most bit is 1, then J is negative. Accordingly, the 

largest (positive) integer that can be stored in a 32-bit memory location  

 

   0 1 1 1 1 ... 1 1 1 1 1 

    31 ones 

 

Or 2
31
-1, which is approximately 2 billion, Similarly, the smallest 

(negative) integer that can be stored in a 32-bit memory location is -2
31
, 

or approximately -2 billion. 

 

 

Binary Exponential Form  
 

Binary numbers, like decimal numbers, can be written in exponential 

form, where powers of two are used instead of powers of ten. Thus, each 

nonzero binary number has a unique normalized exponential form in 

which the binary point appears before the first 1 bit. This unique form 

yields a unique mantissa M, and a unique integer n representing the 

exponent to two. Either of these numbers may be positive or negative, 

and the exponent n may also be zero.    

 

Table 1.10 gives some binary numbers in normalized exponential form, 

each mantissa being written with exactly 5 bits. 

     

 

-423 

423 



Computer Basics 

 42  

Table 1.10 

 

Binary 

Number 

Normalized 

Exponential 

Form 

Mantissa Exponent 

  1010.1 

  0.001111 

-111 

  0.1 

- 0.01010101  

 0.10101 × 24 
 0.11110 × 2 -2 
-0.11100 × 23 
 0.10000 × 20 
-0.10101 × 2 -1 

 0.10101 

 0.11110 

-0.11100 

 0.10000 

-0.10101 

 4 

-2 

 3 

 0 

-1 

 

 

Floating-Point Representation  
 

Floating-point numbers (also called real number) have embedded 

decimal points. Such numbers are stored and processed in binary 

exponential forms. The memory location is divided into three fields, or 

blocks of bits. One field, the first bit, is reserved for sign of the number 

(usually 0 for + and 1 for - ); a second field, for the exponent of the 

number; and last field, for the mantissa of the number. Figure 4.1 shows 

the usual fields of a 32-bit memory location. With a 24-bit mantissa 

field, the precision of the computer is 8 (significant decimal digits). 

 

  sign        exponent        mantissa 

 

   

 

  1 bit         7 bits        24 bits 

  

   Figure 4.1 

 

It remains to discuss the way the integer exponent, n, of a floating-point 

number is represented in its field. A few computers stores n as its binary 

form when n is positive or zero, and as its 2's complement when n is 

negative; i.e. the same way that fixed-point integers are stored in 

memory. However, most computers represent n by its characteristic, n + 

2
t-1
, where t is the number of bits in the exponent field. Table 1.11 shows 

the relationship between the true exponent n and its characteristic when   

t =7. Observe that a 7-bit exponent field can represent exponents from -

64 to 63, which means that the computer can store floating-point 

numbers between 2
-64
 and 263. 

 

    Table 1.11 

True Exponent -64 -63 -62 -61 ... -1 0 1 ...   63 

Characteristic    0    1    2    3 ... 63 64 65 ... 127 

 

Floating-Point Representation  
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Example 4.2 :  

 

Given A = -419.8125. Converting A to binary form yields 

          A = -110100011.11012 

 Hence the normalized exponential form of A is  

   A = - 0.1101000111101 × 29 

The true exponent of A being 9, its 7-bit characteristic is  

   9 + 64 = 73 = 10010012 

Thus A will be stored in the 32-bit memory location as follows. 

 

        Characteristics                                     Mantissa 
1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 ... 0 0 

 

 Sign bit   

 

Observe that (i) the first bit is 1, which indicates that A is negative; (ii) 

the first characteristic field is 1, which indicates that the exponent of A 

is nonnegative; and (iii) sufficiently many 0s are attached to the end of 

the mantissa of A to complete the 24-bit mantissa field. 

 

4.4 BCD Code 
 

There are many ways of representing numerical data in binary form. One 

way is simply to write the numbers to the base 2. This is called straight 

binary coding. Another way is to encode decimal digits. These code, 

which require 4 bits for each decimal digit, is called BCD (binary-coded 

decimal) code. 

 

    Table 1.12 

Decimal 

Digits 

BCD 

Code 

 8-4-2-1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

 

4-bit BCD words are shown in Table 1.12. The first one is a weighted 

code, in which the bits are given, from left to right, the weights 8, 4, 2, 

BCD Code   

 

 
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and 1, respectively. Since these weights are just the place valves in the 

binary system, a decimal digit is encoded as its binary representation. 

 

Example 4.3 : 
 

The BCD representation of N = 469 is  
 
 

  4    6      9 

0100 0110 1001 
 

 

On the other hand, the straight binary representation of N is  
 
 

   N =1110101012 
  

 

which involves 3 fewer bits. 

 

4.5 Parity  
 

For each character, the value of the check bit (0 or 1) is such as to make 

the sum of the bits, including the check bit, odd or even, according as the 

machine operates on odd or even parity. 
 

Example 4.4 :  
 

If the computer uses odd parity, the characters 7, 9  are stored as follows: 
 

Character 6 bit code Parity bit Complete representation using odd 

parity 

7 

9 

000111 

001001 

0 

1 

0000111 

1001001 
 

 

That is, the check bit for 7 is 0 because the sum of the odd bits in the 6-

bit code for 7 is three, which is already odd. On the other hand, the 

check bit for 9 is 1 because the sum of the bits in the 6-bit code for 9 is 

two which is even. 
 

The purpose of the check bit is to ensure that no bit is lost or gained 

when data are transmitted internally in a computer. After a character is 

transmitted, the computer adds up the bits in the character. If a single 

error occurs, the sum of the bits will not have the same parity as the 

parity of the computer. The computer would then retransmit the data. 

Clearly, the computer cannot use this type of checking to see if two 

errors occurred; but such an occurrence is very unlikely. 

 

Parity    
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4.6 EBCDIC and ASCII   
 

Modern data processing frequently requires more than the 28 special 

characters possible under any 6-bit BCD code. (Some data processing 

equipment may even want both lowercase and uppercase letters). 

Accordingly, various 8-bit codes have been developed. Each coded 

character, or byte, is normally divided into four zone bits and four 8-4-2-

1 numeric bits, as shown; 
     

   zone bits     numeric bits 

Z Z Z Z 8 4 2 1 
 

More generally, the word ‘byte’ is used to denote any group of eight bits. 

It is seen that a byte may be represented by two hexadecimal digits, the 

first corresponding to the zone bits and the second to the numeric bits. 

As with the 4- and 6-bit BCD codes, an extra, check bit is utilized in the 

computer. 
 

There are two 8-bit BCD code predominant in the computer industry 

today. EBCDIC, pronounced ‘ebb-see-dick’ and is short for Extended 

Binary-Coded Decimal Interchange Code. This code developed by IBM, 

is used mainly by IBM-compatible computer systems (Table 1.13). 
 

ASCII pronounced 'ass-key' and is short for American Standard Code for 

Information Interchange. This code was originally developed as a 7-bit 

standardization of various special codes, and was then extended to an 8-

bit code. It is used mainly by non-IBM computer systems (Table 1.14). 
 

   Table 1.13 EBCDIC  
 

Char. Zone Numeric Hex Char. Zone Numeric Hex Char. Zone Numeric Hex 

 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
 
 

 
1100  0001 
          0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
1100  1001 
1101  0001 
          0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
1101  1001 

 
 

 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 

S 
T 
U 
V 
W 
X 
Y 
Z 
 

Char. 
 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1110  0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
1110  1001  

 
Zone Numeric 

 
1111  0000 
          0001 
          0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
1111  1001 

E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
 

Hex 
 

F0 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 

black 
. 
< 
( 
+ 
& 
$ 
* 
) 
; 
- 
/ 
, 
% 
> 
? 
: 
# 
@ 
= 

0100  0000 
          1011 
          1100 
          1101 
0100  1110 
0101  0000 
          1011 
          1100 
          1101 
0101  1110 
0110  0000 
          0001 
          1011 
          1100 
          1110 
0110  1111 
0111  1010 
          1011 
          1100 
0111  1110 

           
 

40 
4B 
4C 
4D 
4E 
50 
5B 
5C 
5D 
5E 
60 
61 
6B 
6C 
6E 
6F 
7A 
7B 
7C 
7E 

 

EBCDIC and ASCII     
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Table 1.14 
 

Char. Zone Numeric Hex Char. Zone Numeric Hex Char. Zone Numeric He
x 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

0101  0000 
          0001 
          0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
0101  1001 
 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 

1010  0001 
          0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
          1001 
          1010 
          1011 
          1100 
          1101 
          1110 
1010  1111 

A1  
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 

P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 

1011  0000 
          0001 
          0010 
          0011 
          0100 
          0101 
          0110 
          0111 
          1000 
          1001 
1011  1011 

B0 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
BA 

 

In both systems a digit has its binary representation as the numeric 

portion of its code. For the zone portion, EBCDIC uses 1111 and ASCII 

uses 0101. 

 

4.7 Exercise 
 

1.  Multiple choice questions 
 

a.  Codes are used to reduce the volume of  
 

i)  information ii)  data 

iii)  numbers  iv)  files. 
 

b.  Integers numbers are numbers that have 
 

i)  decimal points  ii)  no decimal points 

iii)  embedded decimal points iv)  no embedded decimal points. 
 

c.  BCD codes require 
 

i)  4 bits for each decimal digit 

ii)  7 bits for each decimal digit 

iii)  8 bits for each decimal digit 

iv)  10 bits for each decimal digit. 
 

2.  Analytical questions 
 

a.  What do you mean by data, information and codes? 

b.  Describe different representation of numbers in computer. 

c.  Write the BCD representation of the following numbers 

 a) 469 and b) 4793. 

d.  What do you understand by BCD, ASCII and EBCDIC codes? 
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Lesson 5 : Logic Functions 
 

 

5.1 Learning Objective 
 

On completion of this lesson you will be able to : 

 

• know the elementary concept of Boolean algebra 

• describe the primary logic gates like AND, OR, NOT 

• draw truth table of output variable for a combination of input 

variables 

• explain the operation of secondary gates like NAND, NOR and 

EXOR. 

 

5.2  Introduction 
 

Data and control instructions move inside a computer by means of pulses 

of electricity. Certain components of computers combine these pulses as 

if they were following a set of rules. The components are the logic 

elements. Computer logic is the combination of inputs and outputs 

produced by logic elements. 

 

Pulses of electricity are called digital signals. A digital signal has two 

discrete levels or values. The two discrete signal levels HIGH and LOW 

can also be represented by binary digits 1 and 0 respectively. A binary 

digit (0 or 1) is referred to as a bit. Since a digital signal can have only 

one of the two possible levels 1 or 0, the binary number system can be 

used for the analysis and design of digital systems. The two levels (or 

states) can also be designated as on and off (or TRUE and FALSE). 

George Boole introduced the concept of binary number system in the 

studies of this mathematical theory of LOGIC in the Laws of Thought in 

1854 and developed its algebra known as Boolean Algebra. 

 

5.3 : Primary Logic Gates 
 

The common use of logic elements is to act as switches, although they 

have no moving parts. They open to pass on a pulse of electricity or 

close to shut it off. This is why they are known as gates. The primary 

gates are OR, AND, NOT. 

  

OR Gate  
 

An OR gate has an output 1 if any of its inputs are 1. The diagram and 

truth table for two input OR gate are shown in Fig 5.1. Ideal output, Y = 

A + B, where + denotes OR operation. 

 

Primary Logic Gates      

 

OR Gate       
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(a)   A 

  B   

 

   Truth Table 

 

(b) 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

Figure 5.1: Two-input OR gate (a) symbol (b) truth table. 

 

Figure 5.2 Illustrates, the close relationship between 2-input OR gate and 

electrical switching circuits. Such a circuit normally contains some 

source of energy (a battery), an output device (a lamp), and one or more 

switches - all connected by wires. A switch is a two-state device that is 

either closed (on) or open (off). In Figure 5.2 switch A and B, are 

connected in parallel. The lamp will light if switch A is closed, or if 

switch B is closed, or if both switches are closed. But this is the property 

described by the truth table for the OR gate, where 1 denotes that the 

switches or lamp is on and 0 indicates that it is off.  

 

 
      A 

 

                                                      
  B 

                        

 

                                               Switches              

                                                        

 

   Battery                          Lamp     

 

Figure 5.2: Parallel circuit. 

 

AND Gate 
 

An AND gate has an output 1 if all of its inputs are 1. The diagram and 

truth table for a two input AND gate are shown in Figure 5.3. Here 

output, Y= A.B, where '.' denotes AND operation. 

 

(a)  A 

      B 

 

Y 

Y = A.B 

AND Gate        

 

) 

� 

� O 

O 
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(b)   Truth Table 

 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

Figure 5.3: Two-input AND gate (a) symbol, (b) truth table. 

 

Figure 5.4 is a circuit showing two switches, A and B, connected in 

series. The lamp will light only when both A and B are closed. This is 

exactly the property described by the truth table for the AND gate, here 

again 1 denotes that the circuit element is on and 0 denotes that it is off. 

 

 

 
                        A                                B                                      

 

 

 

                                                                                                  

            Battery       Lamp  

                                                                                                      

  Figure 5.4: Series circuit 

 

NOT Gate  
 

A NOT gate has one input and one output. It has the effect of reversing 

the input signal and is sometimes called an inverter. The diagram and 

truth table for a NOT gate are shown in Fig 5.5. Here output Y= A  

where '-' indicates NOT operation. 

 

 

(a) A                                Y = A 

 

    Truth Table 

 

(b) 

A Y 

0 1 

1 0 

 

Figure 5.5: NOT gate (a) symbol, (b) truth table 

 

 

NOT Gate         

 

o o 
� � 

O 
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5.4  Secondary Logic Gates  
 

Some secondary gates are NAND, NOR, EXOR etc. NAND and NOR 

gates are called universal gates because any one them can be used to 

realize of any logic expression. 

 

NAND Gate 
 

A NAND gate has the same effect as an AND gate followed by a NOT 

gate. Hence the output will be opposite of the AND gate. The diagram 

and truth table for a two-input NAND gate are shown in Figure 5.6. 

 

(a) A 

 B 

 

(b)        Truth Table 

 

A B Y 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

1 

0 

 

Figure 5.6: NAND gate (a) symbol (b) truth table 

 

 

NOR Gate 
 

A NOR gate has the same effect as OR gate followed by a NOT gate. 

Hence the output will be the opposite of OR gate. The diagram and truth 

table for a two-input NOR gate are shown in Figure 5.7. 

 

 

(a) A 

 B 

 

(b)   Truth Table     

 

A B Y 

0 

0 

1 

1 

0 

1 

0 

1 

1 

0 

0 

0 

 

 Figure 5.7: NOR gate (a) symbol, (b) truth table 

O Y = A . B 

o Y = (A + B) 

Secondary Logic Gates        

 

NAND Gate          

 

NOR Gate           

 

) 
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EXOR Gate 
 

It is widely used in digital circuits. EXOR is not a primary or basic gate. 

Diagram and truth table for a two input EXOR gate are shown in Figure 

5.8. Here output  Y= A ⊕ B , where  ⊕  denotes EXOR operation. 

 

(a) A 

 B 

 

(b)   Truth Table 

 

A B Y 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

 

 Figure 5.8: EXOR gate (a) symbol, (b) truth table 

 

Basic gates (AND, OR, NOT) and universal gates (NAND, NOR) can be 

used in combination to make up digital computer circuits. 

 

Y = A ⊕ B 

EXOR Gate 

) ) 
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5.5 Exercise  
 

1. Multiple choice questions 
 

a.  Which of the following are the primary gates? 
 

i)  OR, AND, NAND ii)  NOR, AND, NOT 

iii)  OR, AND, NOT  iv)  NOR, NAND, EXOR. 
 

b.  What is pulses of electricity? 
 

i)  analog signals  ii)  digital signals 

iii)  voltage   iv)  current. 
 

c.  An OR gate has an output 1 if 
 

i)  all of its inputs are 1 ii)  any of its inputs are 1 

iii)  any of its inputs are 0 iv)  all of its inputs are 0. 
 

B. Analytical questions  
 

a.  What do you know about Boolean algebra? 

b.  Draw the diagram and truth table of two-input OR gate. 

c.  Explain the operation of the following gates 

 AND, NOT,  NOR,  XOR. 

d.  What do you  understand by basic gate and universal gate? 
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