Number Systems

Unit 2: Number Systems, Codes and

Logic Functions

Introduction

A digital computer manipulates discrete elements of data and that these
elements are represented in the binary forms. Operands used for
calculations can be expressed in the binary number system. Other
discrete elements including the decimal digits, are represented in binary
codes. Data processing is carried out by means of binary logic elements
using binary signals. Quantities are stored in binary storage elements.

The purpose of this unit is to introduce the various binary concepts as a
frame of reference for further study in the succeeding units

Lesson 1 : Number Systems

1.1 Learning Objective
On completion of this lesson you will be able to :

e describe different number systems

e identify decimal, binary and other numbers

e cxplain different number systems with examples.
1.2 Number Systems
Any positive integer b>1 can be chosen as the base for a positional
number system similar to the decimal system (b=10) or the binary
system (b=2). Such a system uses b symbols for the integers

0,1,2,3, ... b-1

These symbols are called the digits of the system.

Any integer N is represented in the system by a sequence of base-b digits

N=a,a,,...a; a

Then b is the place value of a,, and

N=a,xb"+a,xb""'+...+a,xb*+a,xb +a, xb°

17

Decimal System

Binary System

Computer Basics

1.3 Decimal System

Any positive integer N, represented in the decimal system as a string of
decimal digits, may also be expressed as a sum of powers of 10, with
each power weighted by a digit. For example, N = 8253 can be
expressed as follows :

8253 =8x10°+2 x10>+5 x10"' +3x10°
=8x1000+2x100+5%x10+3x%1
= 8000 + 200 + 50 +3

The powers of ten,
10°=1 10'=10 10* =100 10° = 1000

which correspond respectively to the digits in a decimal integer as read
from right to left, are called the place values of the digits.

Any fractional value M, represented in the decimal system by a string of
decimal digits together with an embedded decimal point, may also be
expressed in expanded notation by using negative powers of 10.
Specifically, the place values of the digits in M to the decimal point are
respectively

10" =0.1 107 =0.01 10°=10.001
For example, M = 837.526 is expressed in expanded notation as follows:

837.526 = 8x10> +3x10'+7x10° +5% 10" +2x10™ +6x107
= 800+30+7+0.5+0.02 + 0. 006

This decimal fraction is said to have three decimal places, the number of
digits to the right of the decimal point.

The arithmetic of decimal fractions is not very complicated; one has to
keep track of the decimal points.

1.4 Binary System

Any binary number is therefore a sequence of bits, possibly with an
embedded binary point. Those numbers that have no fractional part, i.e.,
are without an embedded binary point, are called binary integers.

The place values in the binary system are the powers of the base b=2,
just as the place values in the decimal systems are the powers of ten.

18

Number Systems, Codes and Logic Functions

Specifically, the place values of the integral part of a binary number are
the nonnegative powers of two.

2° 2! 2? 2}

and the place values of the fractional part of a binary number are the
negative powers of two,

2-1 2-2 2-3
Table 1.1.
Binary place values | Decimal values
2+ 0.0625
27 0.125
27 0.25
2! 0.5
2° 1
2! 2
2? 4
2} 8
1.5 Octal System

Since 8 = 2°, each octal digit has a unique 3-bit binary representation,
given in Table 1.2.

Table 1.2
Octal digit | Decimal values | Binary equivalent
Octal System I
0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111

19

Hexadecimal System I

Computer Basics

The place values in the octal system are powers of 8; some of the these
powers appear in Table 1.3.

Table 1.3

Octal Place Values

Decimal Values

8-3
8-2
8-1
80
81
82
83
84
85

1/512=0.001953125
1/64 = 0.015625
1/8=0.125
1
8
64
512
4096
32768

1.6 Hexadecimal System

Since 16 =2, each hexadecimal digit has a unique 4-bit representation
which is shown in Table 1.4. The place values in the hexadecimal
system are the powers of 16, some of which are listed, along with their
decimal values, in Table 1.5.

Table 1.4 Table 1.5
Hexadecimal | Decimal | Birnary Hexadecimal
Digits Values | Equivalents | | Place Values | Decimal Values
0 0 0000 167 1/4096 =
1 1 0001 0.000244140625
2 2 0010 162 1/256 = 0.00390625
3 3 0011 16 1/16 = 0.0625
4 4 0100 16° 1
5 5 0101 16 16
6 6 0110 16 256
7 7 0111 16° 4096
8 8 1000 16* 65536
9 9 1001 16° 1048576
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

20

Number Systems, Codes and Logic Functions

1. 7 Exercise

Multiple choice questions
The place values in the decimal systems are the powers of

2

8
10
16.

The place values of the fractional part of a binary number are the

nonnegative powers of 2
negative powers of 2
negative powers of 10
negative powers of 8.

Each hexadecimal digit has a unique

2-bit binary representation
3-bit binary representation
4-bit binary representation
5-bit binary representation.

Analytical questions

How 625.536, 0.326, 735, 1278 can be expressed in expanded
notation in respect of decimal system?

Identify the number of digit needed to express decimal, binary,
octal & hexadecimal system.

Questions for short answers
What are the bases of binary, decimal, octal and hexadecimal

numbers?
Give binary values for hexadecimal number AF3.

21

Computer Basics

Lesson 2 : Conversion of Numbers

2.1 Learning Objective
On completion of this lesson you will be able to :

identify the differences between different number systems
convert binary to decimal

convert decimal to binary

interconvert hexadecimal-decimal

interconvert hexadecimal-binary.

2.2 Binary-to-Decimal Conversion

Any binary number can be written in expanded notation as the sum of
each digit times that digit's place value. For example,

110101 =1x2°+1%x2*+0x2°+1%x22+0x2'+1x2°

101.110=1x22+0%x 2"+ 1 x2°+1x21+1%x22+(Qx2°

Since each power of two is weighted by either 0 or 1, the binary number
is simply the sum of those place values in which the bit 1 appears. This
sum at once gives us the decimal equivalent of the binary number.

Table 1.6 lists the binary representations of the integers from 0 to 25,
with the place of the bits shown at the top of the table. Sometimes a
subscript 2 is used to distinguish a binary number, e.g. one may write
101011, if it is not clear from the context that 101011 is a binary number
rather than a decimal number. Also, for easier reading, one sometimes
separates a binary number into 4-bit groups, to the left and right of the
binary point; e.g.

10110100.011010 might be written 1011 0100.0110 10

22

Number Systems, Codes and Logic Functions

Table 1.6
Decimal Binary Number
Number 16s 8s 4s 2s 1s

(==}

NN NN = = = = = = = = = =

AR ON —~ S0 AA N W= PRI WD —O
—_——O OO O OO OO e e e e e e

OO = =k e = OO OO e =S OO0 O = = = -

OO~ — 00—~ — 0O~ — OO~ —~ OO = =0 O — —

— D et O et O et O et O e O e O = O = O = O = O = O

— e e e e e e e

Example 2.1:

(a) To convert 110101, to its decimal equivalent, write the appropriate
place value over each bit and then add up those powers of two which
are weighted by 1 :

Place values 2% 2t 23 2? 2t 20

Binary number 1 1 0 1 0 1
L, 1
> 4
» 16
» 32
Decimal equivalent ?

23

Decimal-to-Binary Conversion I

Computer Basics

(b) To convert 101.1101, to its decimal equivalent, use Table 1.1 for
the decimal values of the negative powers of two

Place values 2% 2! 20 2t 22 D 24

Binary number 1 0 1 1 1 0 1
| |—> 0.0625
> 0.25
> 0.5
> 1
> 4
Decimal equivalent 58125

2.3 Decimal-to-Binary Conversion

It is possible to find binary representation of a decimal number N by
converting its integral part (N;), and its fractional part (Ny) separately. It
is illustrated with the decimal number N = 109.78125.

Example 2.2

(a) To convert N; = 109 to binary equivalent, divide N; and each
successive quotient by 2, noting the remainders, as follows :

Divisions Quotients Remainders
109 =2 54 1 4
54 +2 27 0
27 +2 13 1
13+2 6 1
6+2 3 0
3+2 1 1
1+2 0 1

The zero quotient indicates the end of the calculations. The sequence of
remainders from the bottom to up, as indicated by the arrow, yields the
required binary equivalent. That is N; = 109 =1101101,.

In practice, the above divisions may be condensed as follows :
Remainders

2)109 A

2)54 1

2)27 0

D13 1

2)6 1

2)3 0

1 1

24

Number Systems, Codes and Logic Functions

Here stop when the quotient, 1, is less than the divisor 2, since this last
quotient will be next and last remainder. Again the arrow indicates the
sequence of bits that gives the binary equivalent of the number.

(b) To convert Ng = 0.78125 to its binary equivalent, multiply N and
each successive fractional part by 2, noting the integral part of the
product, as follows :

Multiplications Integral parts
0.78125 x 2 =1.56250 1
0.5625 x2 =1.1250 1

0.125%x2 =0.250 0

025x2 =0.50 0

0.50x2 =1.00 1

The zero fractional part indicates the end of the calculations. It is
observed that the integral part of any product can only be 0 or 1, since it
is required to double number which is less than one. The sequence of
integral-part digits from the top to down, as indicated by the arrow,
yields the required binary equivalent. That is, Nr = 0.78125 =0.11001,.

In practice, the above multiplications may be condensed as follows :

0.781 25
x2
1.562'50
_x2
1,125 00
x2
0.250 00
x2
0.500 00
__x2
L 100000

It is observed that the integral part of each product is underlined and
does not figure in the next multiplication. Again the arrow indicates the
sequence of integral or integral-part digits that give the required binary
representation.

It is found that the binary equivalents of the integral and fractional parts
of the decimal number N = 109.78125. The binary equivalent of N is

simply the sum of these two equivalents:

N=N;+N=1101101.11001

25

Hexadecimal-Decimal Inter-
conversion

Computer Basics

Example 2.3 :

Let, N = 13.6875. Convert the integral part, N; = 13, and the fractional
part, Ng = 0.6875, into binary forms :

Remainders Integral parts
)13 0.6875
2)6 1 x2
2)3 0 1.3750
1 1 x2
- 0.7500
x2
1.5000
x2
vy 1.0000

Thus, N =13.6875=1101.1011,.

Remark: The binary equivalent of a terminating decimal fraction does
not always terminate. For example, convert N = 0.6 as above:

Multiplications Integral parts

0.6x2=1.2 1
02x2=04 0
04%x2=0.8 0
0.8x2=1.6 1

At this point in the procedure, one can again multiply 0.6 by 2. This
means the above four steps will be repeated again and again. That is,

N=0.6=0.1001 1001 1001 ...,

(The number of bits which repeat is not always four; nor does the
repeating block necessarily begin at the binary point, it depends on the
given N.)

2.4 Hexadecimal-Decimal Interconversion

Conversion between the hexadecimal and decimal systems is
accomplished via the algorithms of Section 2.3 with b = 16. There is an
added difficulty in that one has to know how to handle the hexadecimal
digits A, B, C, D, E and F. One can also convert from hexadecimal to
decimal by decimal evaluation of the expanded hexadecimal form.

26

Number Systems, Codes and Logic Functions

Example 2.4 :

(a) To convert 73D54 to its decimal equivalent, express the number in

expanded notation, change D to 13, and then calculate using
decimal arithmetic.

73D5,s =7%16° +3x16> +13x16' +5x16°
=7%4096+3%x256+13%16 + 5x1
=28672 + 768 + 208 +5 = 29653

Alternatively, one can apply the conversion algorithm as follows :

7
x16
112
13
115
x16
1840
_+13
1853
x16
29648
+5
29653 = 73D56

(b) Convert 39.B8 ¢ to its decimal equivalent as follows :

39.B8;s =3x16'+9x 16°+ 11 x 16" +8 x 16~

=3x16+9x1+11x0.0625+ 8 x 0.00390625
=48+9+0.6875+0.03125=57.71875

(c) To convert the decimal number P = 9719 to its hexadecimal

equivalent, divide P, and each successive quotient by the base b =
16, noting the remainders, as follows :

Divisions Quotients Remainders
9719 + 16 607 7
607 + 16 37 15
37+ 16 2 5
2+16 0 2

The sequence of remainders, which replaces the decimal remainder 15

by the hexadecimal digits F, in reverse order, gives the hexadecimal
form for P; i.e. P =25F7,4

27

Hexadecimal-Binary Inter-
conversion

Computer Basics

(d) To convert the decimal fraction Q = 0.78125 to its hexadecimal
equivalent, apply the integral-part algorithm, with b = 16, as
follows :

Multiplications Integral parts
0.78125 x 16 =12.50000 12
0.50000 x 16 = 8.00000 8 l

In this case a zero fractional part is reached. The sequence of integral
parts, which replace the decimal 12 by the hexadecimal digit C, gives the
required hexadecimal form for Q = 0.C8,.

(e) To convert the decimal number N=9719.78125 to its hexadecimal
form, add the representations found in (c) and (d) :

Hexadecimal-Binary Interconversion

This is accomplished exactly as octal-binary interconversion, except that
4-bit equivalents are now involved.

Example 2.5 :

Convert to binary form (a) 3D59,, (b) 27.A3C .
Replace each hexadecimal digit by its 4-bit representation (Table 1.4)

(a) 3D59

AN

0011 1101 0101 1001

Hence, 3D59,, = 11110101011001,.

b) 27.A3C

/N

0010 0111 . 1010 0011 1100

Hence, 27.A3C,,=100111:1010001111,.

28

Number Systems, Codes and Logic Functions

Example 2.6 :

Convert to hexadecimal form (a) 10110100101110,,

11100.1011011011,,

(b)

Partition each binary number into 4-bit blocks to the left and right of the
binary point adding Os if necessary. Then replace each 4-bit block by its

equivalent hexadecimal digit (Table 1.4).

(a) 0010 1101 0010 1110

N\

2D2E

Hence, 2D2E ;4 is the required hexadecimal form.

(b) 0001 1100. 1011 0110 1100

N\

1C.B6C

Hence, 1C.B6C s is the required hexadecimal form.

2.5 Exercise

1. Multiple choice questions

a. The decimal equivalent of 1110, is
iy 8

i) 10

iii) 12

iv) 14,

b. The decimal equivalent of 10110, is

R
i) 18
i) 22
iv) 24

29

Computer Basics

)

i)
iii)
v)

)

i)
iii)
v)

ii)

iii)

i)
ii)

30

The binary equivalent of 109 is

100110,

1111001,
1101101,
1110101,

The decimal equivalent of 25 F7,4is

1719
9610
9719
09919.

Analytical questions

Convert the following binary numbers to decimal equivalent.

10101,
100101,
1011.101,
101.1101,

Convert the following decimal numbers to binary

653.625
13.6875
367

235.07.

Convert the following hexadecimal numbers to decimal

129A.B86,,
73D5,6
0.7825
39.C8,

Convert the following hexadecimal numbers to binary

129A.B86,6
3D5916.

Convert the following binary numbers to hexadecimal

10110100101110,
101101101110.1000110,,

Binary Addition

Number Systems, Codes and Logic Functions

Lesson 3: Binary Arithmetic

3.1 Learning Objective

On completion of this lesson you will be able to :

e add two binary numbers
e multiply two or more binary numbers
e subtract one binary number from another
e do division of binary numbers.
3.2 Binary Addition

The execution of numerical calculations is essentially the same in all
positional number systems. The addition of two binary numbers is
accomplished according to the following three-step algorithm :

Step 1.

Step 2.

Step 3.

Add the first (rightmost) column.

Record the unit digit of the column sum. If the sum exceeds
one, carry the two's digit 1, to the next column.

If there are additional columns or if there is a carry from Step
2, add the next column and repeat Step 2. Otherwise stop.

The addition table for the binary digits 0 and 1 appears as Table 1.7 the
only additional facts needed for binary addition appear in Table 1.8.

+ 0 1 0+0=0
0 0 1 0+1=1
1 1 10 1+0=1

1+ 1 =0, with a carry of 1
1+1+1=1, with acarry of 1

Table 1.7 Binary Addition

Table 1.8 Binary Addition Facts

Example 3.1 :

Evaluate the binary sum

111 Addend
+101 Augend

by means of the three-step algorithm.

31

Computer Basics

STEP 1: 1 + 1 =0, with a carry of 1.

STEP 2:
1 Carries
111 Addend
+ 101 Augend
0
STEP 3: 1+1 = 0, with a carry of 1.
STEP 2.
11 Carries
111 Addend
+101 Augend
00
STEP3:1+1+1=1, with a carry of 1.
STEP 2.
111 Carries
111 Addend
+101 Augend
100
STEP 3:1+0=I.
STEP 2.
111 Carries
111 Addend
+101 Augend
1100 Sum
Step 3. Stop.
Example 3.4 :

To calculate the binary product 1101011 x 10110 multiply 1101011 by
the digits 0, 1, 1, 0 and 1 as follows :

1101011
X 10110
0000000
1101011
1101011
0000000
1101011

Then add the five bottom rows of numbers. In actual practice, one does

not write down any zero products. Finally bring down initial zero, if any
and form a running total, adding one nonzero row after another :

32

Binary Subtraction

Number Systems, Codes and Logic Functions

1101011 nitial zero
x 1011
110101 First nonzero product
1101011 Second nonzero product
1010000010 Sum
1101011 Third nonzero product
100100110010 Final sum

The final sum is the required product. Here it is extremely important to
line up the numbers in the correct columns.

3.3 Binary Subtraction

Subtraction in the binary system can be performed using the following
two-step algorithm:

Step 1. If the lower (subtrahend) digit is greater than the upper
(minuend) digit, borrow from the next column to the left.

Step 2. Subtract the lower value from the upper value.

In Step 1 "borrowing" means appropriating, with no intention of paying
back.

The only subtraction facts needed for binary subtraction are the four
listed in Table 1.9.

The last entry comes from :
10-1=1

That is, the difference 0 - 1 requires borrowing, which then yields 10 -1
=1.
Table 1.9 Binary subtraction facts

0-0=0
1-0=1
1-1=0
0-1=1

, with a borrow of 1 from the next column

Example 3.5 :

To evaluate the binary difference 11101-1011, one could apply the
subtraction facts in Table 1.5 and obtain.

11101

- 1011
10010

33

Binary Division

Computer Basics

It is observed that 1 is borrowed from the third column because of the
difference 0-1 in the second column.

As with decimal subtraction, binary subtraction becomes more complex
when a borrow is needed from a digit which is 0. Again, a borrow is
taken from the first nonzero digit to the left, but now each intervening 0
becomes 1 (as 10-1=1).

Example 3.6 :
Consider the difference
11000
-10011
Obtain,
011
11000
- 10011
101

Here a difference 0 - 1 occurs in the first column; hence it is required to
borrow from the fourth column, where the first nonzero digit to the left
appears, and the two intervening Os become 1s.

Example 3.7 :

Calculate the difference 1100101001-110110110.
00110 01
1100101001

- 110110110
101110011

3.4 Binary Division

Recall that the division of decimal numbers can be reduced to
multiplying the divisor by individual digits of the dividend and
subtraction.

Example 3.8 :

Calculate 42558 + 123. Here 123 is the divisor. The algorithm for
division yields :

34

Number Systems, Codes and Logic Functions

346

123)42558
369

565
492

738

738

0

That is, multiply 123 by 3 and subtract the product, from 425; then
multiply 123 by 4 and subtract the product 492, from 565; lastly multiply
123 by 6 and subtract the product 738, from 738, to obtain a 0
remainder. [Because of the geometry of the scheme, what these steps
actually accomplish is first to subtract 3 x 10* times the divisor from the
dividend, then 4 % 10 times the divisor from what is left, and then 6
times the divisor from what is left. At that point the dividend is
exhausted, showing that the dividend originally contained the divisor

3 x10°+ 4 x 10 + 6 =346 times].

The above algorithm also works for binary division. In fact, multiplying
the divisor by the only nonzero digit, 1, does not change the number;
hence the algorithm for division reduces to repeated subtraction of the
divisor (times a power of 2).

Example 3.9 :
Evaluate 1010001 + 11. This gives

11011
11)1010001
11
100
11
100
11
11
11
0
Thus the quotient is 11011.

As in decimal division of integers, a remainder is possible when one
binary is divided by another. Also, the division of binary fractions is
handled the same way as the division of decimal fractions; that is, one
converts the divisor to an integer by moving the binary point in both the
divisor and the dividend the same the number of places.

35

Complements

Computer Basics

Example 3.10 :
Evaluate 1110111 + 1001. Applying the usual division algorithm,

1101
1001)1110111
1001

1011
1001

1011

1001

10

The quotient is 1101, with a remainder 10.

3.5 Complements

Arithmetic complements require in two separate but related situations.
First of all, complements come up in storing numbers in the computer.
While human-beings use the signs + and - to denote positive and
negative numbers, the computer can process data only in terms of bits.
Although it is possible to reserve a bit to denote the sign of a number
(say, 0 for + and 1 for -), many computers store negative numbers in the
form of their arithmetic complements.

Complements also arise in the operation of subtraction. In fact,
complements can be used to reduce subtraction to addition. This is
especially useful as it avoids the possibility of repeated borrowing from
one column to another.

There are two types of complements, the one's complement and two's
complement, respectively.

A is a binary number, the one's complement of A is obtained by

subtracting each digit of A from 1, and the two's complement of A is its
one's complement plus 1.

Example 3.11 :
Binary number: 111100001111

One's complement: 000011110000
Two's complement: 000011110001

36

Number Systems, Codes and Logic Functions

Observe that taking the ones complement simply inverts each digit, i.e. 0
is replaced by 1 and 1 is replaced by 0.

As in the decimal system, binary subtraction is performed by adding the
radix-minus-one (one's) complement plus one or by adding the radix
(two's) complement.

Example 3.12 :

Evaluate the difference Y = B - A, where A = 10001110 and B =
11110000.

(a) First by ordinary binary subtraction :

011
11110000 B
-10001110 A
01100010 Y

Observe that the borrowing was propagated to the third digit to the left.
(b) The one's complement of A is 01110001. Add this to B and then
add 1:

11110000 B
+ 01110001 One's complement of A

D01100001
1
01100010

(This method is also given the name end-around carry).

(c) The two's complement of A is 01110010. Add this to B:

11110000 B
+01110010 Two's complement of A

®01100010

Deleting the 1 (which would be an overflow in an 8-bit register) gives
the difference Y.

37

Computer Basics

3.6 Exercise

1. Multiple choice questions

a. Addition in the binary system can be performed using
i) 2 step algorithm

ii) 3 step algorithm

iii) 4 step algorithm

iv) 5 step algorithm.

b. Complement arise in the operation of

i) addition

ii) subtraction

iii) multiplication

iv) conversion.

2. Analytical questions

a. Describe the three step algorithm with example.
b. Describe the 2-step algorithm.

c. Add the following binary numbers

i) 10110, and 1100,
ii)100101, and 10100,

d. Multiply the following numbers

i) 100011, and 101,
ii)101, and 1011,,

e. Evaluate the following
i) 10010-11011
ii) 10101 - 00110
iii)11101 - 1011.

f. Evaluate the following

i) 11010011 = 11
ii) 11110111 =+ 1001.

38

Number Systems, Codes and Logic Functions

g. What do you understand by 1's complement and 2's complement
method?

h. Find the 1's complement and 2's complement of the following
numbers

i) 101101,

ii) 111100001111,
iii) 9090,

iv) 1010101,

i. Perform following subtraction using 1's and 2's complement
method

)11011 - 10010

i1)10001110 - 11110000
iii) 10101 - 00110.

39

|Data Information and Codes I

Integers Representation I

Computer Basics

Lesson 4 : Data Representation and Codes

4.1 Learning Objective

On completion of this lesson you will be able to :

describe different methods of coding

know the definitions of data, information and code

describe different methods of data representation in computers
identify different representation of numbers in computers.

4.2 Data Information and Codes

‘Data’ are the names given to basic facts such as names and numbers.
Examples are: unit price, quantity sold, times, dates, product, name,
addresses, tax codes.

Information is data which has been converted into a more useful form,
i.e. processed facts. For example: total price = unit price x quantity sold.
Here total price is information and unit price, quantity sold are data.
Examples are: pay slips, receipts, reports.

‘Codes’ are used to reduce the volume of data. The recording of data can
be made less laborious, less prone to error and the data will subsequently
be more manageable and easier to manipulate if standard abbreviations
or simplified representations are used. This technique is called data
coding. Examples: Yes/No answers on forms can be represented by
single Y’s or N’s. A person's sex may be indicated by M or F.

4.3 Data Representation

Here discussion will be on how numeric data are represented inside the
computer using straight binary coding, which encodes an entire number
as a whole. Straight binary coding requires that numbers be stored in
computer locations as a fixed number of bits. A list of bits so treated as a
unit is called a word, and the number of bits is called the length of the
word. For definiteness, assume, unless otherwise stated, that computers
have words of fixed length 32.

Integers Representation

Integers or fixed-point numbers are numbers that have no decimal points.
An integer J is represented in the memory of the computer by its binary
form if J is positive, and by its 2's complement (i.e. the 2's complement
of its absolute value) if J is negative.

Example 4.1 :

40

Number Systems, Codes and Logic Functions

The computer stores 423 = 110100111, in a 32-bit memory location by
introducing sufficient Os at the beginning of the binary form:

423 lololololo[.. Jolo[1[1]o]1][o]o]1]1]1]

The computer stores -423 in a memory location by taking the 1's
complement of the above representation for 423 and then adding 1:

-423 Lafafaafaf . Jafafolol1]o 1]t]olo 1]

In the first display the dots represent omitted Os; in the second omitted
I's.

The computer can tell whether an integer J in memory is positive or
negative by looking at the left most bit. If the first bit is 0, then J is
positive; if the left most bit is 1, then J is negative. Accordingly, the
largest (positive) integer that can be stored in a 32-bit memory location

O1111...11111
31 ones

Or 2°'-1, which is approximately 2 billion, Similarly, the smallest
(negative) integer that can be stored in a 32-bit memory location is -2°,
or approximately -2 billion.

Binary Exponential Form

Binary numbers, like decimal numbers, can be written in exponential
form, where powers of two are used instead of powers of ten. Thus, each
nonzero binary number has a unique normalized exponential form in
which the binary point appears before the first 1 bit. This unique form
yields a unique mantissa M, and a unique integer n representing the
exponent to two. Either of these numbers may be positive or negative,
and the exponent » may also be zero.

Table 1.10 gives some binary numbers in normalized exponential form,
each mantissa being written with exactly 5 bits.

41

Floating-Point Representation I

Computer Basics

Table 1.10
Binary Normalized Mantissa | Exponent
Number Exponential
Form

1010.1 0.10101 x 2* 0.10101 4

0.001111 0.11110x2 7 0.11110 | -2
-111 -0.11100 x 2° -0.11100 3

0.1 0.10000 x 2° 0.10000
-0.01010101 | 910101 x 2! -0.10101 -1

Floating-Point Representation

Floating-point numbers (also called real number) have embedded
decimal points. Such numbers are stored and processed in binary
exponential forms. The memory location is divided into three fields, or
blocks of bits. One field, the first bit, is reserved for sign of the number
(usually 0 for + and 1 for -); a second field, for the exponent of the
number; and last field, for the mantissa of the number. Figure 4.1 shows
the usual fields of a 32-bit memory location. With a 24-bit mantissa
field, the precision of the computer is 8 (significant decimal digits).

sign —¢ exponent mantissa
1 bit —+ 7 bits 24 bits
Figure 4.1

It remains to discuss the way the integer exponent, n, of a floating-point
number is represented in its field. A few computers stores n as its binary
form when n is positive or zero, and as its 2's complement when n is
negative; i.e. the same way that fixed-point integers are stored in
memory. However, most computers represent n by its characteristic, n +
2"! where t is the number of bits in the exponent field. Table 1.11 shows
the relationship between the true exponent n and its characteristic when
t =7. Observe that a 7-bit exponent field can represent exponents from -
64 to 63, which means that the computer can store floating-point
numbers between 2°** and 2%.

Table 1.11
True Exponent | -64 | -63 | -62 | -61 | ... | -1 0 1 63
Characteristic 0 1 2 3] ..]163]64] 65 127

42

Number Systems, Codes and Logic Functions

Example 4.2 :

Given A =-419.8125. Converting A to binary form yields
A=-110100011.1101,
Hence the normalized exponential form of A is
A=-0.1101000111101 x 2°
The true exponent of A being 9, its 7-bit characteristic is
9+64=73=1001001,
Thus A will be stored in the 32-bit memory location as follows.

| Characteristics | Mantissa |
[tftfoJoftfoJoJufurfrJoftfofoJofJtftfiJtfofrJoJofof. Jofo]
Sign bit

Observe that (i) the first bit is 1, which indicates that A is negative; (ii)
the first characteristic field is 1, which indicates that the exponent of A
is nonnegative; and (iii) sufficiently many Os are attached to the end of
the mantissa of A to complete the 24-bit mantissa field.

4.4 BCD Code

There are many ways of representing numerical data in binary form. One

I way is simply to write the numbers to the base 2. This is called straight

BCD Code binary coding. Another way is to encode decimal digits. These code,

which require 4 bits for each decimal digit, is called BCD (binary-coded
decimal) code.

Table 1.12
Decimal | BCD
Digits Code
8-4-2-1
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 0 1IN N b W — O

4-bit BCD words are shown in Table 1.12. The first one is a weighted
code, in which the bits are given, from left to right, the weights 8, 4, 2,

43

Parity

Computer Basics

and 1, respectively. Since these weights are just the place valves in the
binary system, a decimal digit is encoded as its binary representation.

Example 4.3 :

The BCD representation of N = 469 is

4 6 9
(0100 o110 |1001 |

On the other hand, the straight binary representation of N is

N=111010101,

which involves 3 fewer bits.

4.5 Parity

For each character, the value of the check bit (0 or 1) is such as to make
the sum of the bits, including the check bit, odd or even, according as the
machine operates on odd or even parity.

Example 4.4 :

If the computer uses odd parity, the characters 7, 9 are stored as follows:

Character | 6 bit code | Parity bit | Complete representation using odd
parity
7 000111 0 0000111
9 001001 1 1001001

That is, the check bit for 7 is 0 because the sum of the odd bits in the 6-
bit code for 7 is three, which is already odd. On the other hand, the
check bit for 9 is 1 because the sum of the bits in the 6-bit code for 9 is
two which is even.

The purpose of the check bit is to ensure that no bit is lost or gained
when data are transmitted internally in a computer. After a character is
transmitted, the computer adds up the bits in the character. If a single
error occurs, the sum of the bits will not have the same parity as the
parity of the computer. The computer would then retransmit the data.
Clearly, the computer cannot use this type of checking to see if two
errors occurred; but such an occurrence is very unlikely.

44

EBCDIC and ASCII

Number Systems, Codes and Logic Functions

4.6 EBCDIC and ASCII

Modern data processing frequently requires more than the 28 special
characters possible under any 6-bit BCD code. (Some data processing
equipment may even want both lowercase and uppercase letters).
Accordingly, various 8-bit codes have been developed. Each coded
character, or byte, is normally divided into four zone bits and four 8-4-2-
1 numeric bits, as shown;

zone bits numeric bits
lz [z |z |z [8 [4 2 [1 |

More generally, the word ‘byte”’ is used to denote any group of eight bits.
It is seen that a byte may be represented by two hexadecimal digits, the
first corresponding to the zone bits and the second to the numeric bits.
As with the 4- and 6-bit BCD codes, an extra, check bit is utilized in the
computer.

There are two 8-bit BCD code predominant in the computer industry
today. EBCDIC, pronounced ‘ebb-see-dick’ and is short for Extended
Binary-Coded Decimal Interchange Code. This code developed by IBM,
is used mainly by IBM-compatible computer systems (Table 1.13).

ASCII pronounced 'ass-key' and is short for American Standard Code for
Information Interchange. This code was originally developed as a 7-bit
standardization of various special codes, and was then extended to an 8-
bit code. It is used mainly by non-IBM computer systems (Table 1.14).

Table 1.13 EBCDIC

Char. | Zone Numeric | Hex Char. Zone Numeric | Hex | Char. Zone Numeric Hex
S 1110 0010 E2 | black 0100 0000 40
A 1100 0001 C1 T 0011 E3 . 1011 4B
B 0010 C2 U 0100 E4 < 1100 4C
C 0011 C3 \% 0101 E5 (1101 4D
D 0100 Cc4 w 0110 E6 + 0100 1110 4E
E 0101 C5 X 0111 E7 & 0101 0000 50
F 0110 Cé6 Y 1000 E8 $ 1011 5B
G 0111 C7 Z 1110 1001 E9 * l 1100 5C
H 1000 C8) 1101 5D
1 1100 1001 Cc9 Char. Zone Numeric | Hex ; 0101 1110 S5E
J 1101 0001 D1 - 0110 0000 60
K 0010 D2 0 1111 0000 FO / 0001 61
L 0011 D3 1 0001 F1 R 1011 6B
M 0100 D4 2 0010 F2 % 1100 6C
N 0101 D5 3 0011 F3 > 1110 6E
O 0110 D6 4 0100 F4 ? 0110 1111 6F
P 0111 D7 5 0101 F5 : 0111 1010 TA
Q 1000 D8 6 0110 F6 # 1011 7B
R 1101 1001 D9 7 0111 F7 @ l 1100 7C
8 v 1000 F8 = 0111 1110 7E

9 1111 1001 F9

45

Computer Basics

Table 1.14
Char. Zone Numeric | Hex Char. | Zone Numeric | Hex | Char. | Zone Numeric | He
X

0 0101 0000 50 A 1010 0001 Al P 1011 0000 BO
1 0001 51 B 0010 A2 Q 0001 Bl
2 0010 52 C 0011 A3 R 0010 B2
3 0011 53 D 0100 A4 S 0011 B3
4 0100 54 E 0101 A5 T 0100 B4
5 0101 55 F 0110 A6 U 0101 B5
6 0110 56 G 0111 A7 \% 0110 B6
7 0111 57 H 1000 A8 w 0111 B7
8 v 1000 58 1 1001 A9 X 1000 B8
9 0101 1001 59 J 1010 AA | Y v 1001 B9

K 1011 AB | Z 1011 1011 BA

L 1100 AC

M 1101 AD

N v 1110 AE

[6) 1010 1111 AF

In both systems a digit has its binary representation as the numeric
portion of its code. For the zone portion, EBCDIC uses 1111 and ASCII
uses 0101.

4.7 Exercise

1. Multiple choice questions

a. Codes are used to reduce the volume of
i) information i1) data
iii) numbers iv) files.

b. Integers numbers are numbers that have

i) decimal points ii) no decimal points
iii) embedded decimal points iv) no embedded decimal points.
c. BCD codes require

i) 4 bits for each decimal digit
ii) 7 bits for each decimal digit
iii) 8 bits for each decimal digit
iv) 10 bits for each decimal digit.

2. Analytical questions

a What do you mean by data, information and codes?
b. Describe different representation of numbers in computer.
c. Write the BCD representation of the following numbers
a) 469 and b) 4793.
d. What do you understand by BCD, ASCII and EBCDIC codes?

46

Primary Logic Gates I

OR Gate I

Number Systems, Codes and Logic Functions
Lesson 5 : Logic Functions

5.1 Learning Objective
On completion of this lesson you will be able to :

e know the elementary concept of Boolean algebra

e describe the primary logic gates like AND, OR, NOT

e draw truth table of output variable for a combination of input
variables

e cxplain the operation of secondary gates like NAND, NOR and
EXOR.

5.2 Introduction

Data and control instructions move inside a computer by means of pulses
of electricity. Certain components of computers combine these pulses as
if they were following a set of rules. The components are the logic
elements. Computer logic is the combination of inputs and outputs
produced by logic elements.

Pulses of electricity are called digital signals. A digital signal has two
discrete levels or values. The two discrete signal levels HIGH and LOW
can also be represented by binary digits 1 and 0 respectively. A binary
digit (0 or 1) is referred to as a bit. Since a digital signal can have only
one of the two possible levels 1 or 0, the binary number system can be
used for the analysis and design of digital systems. The two levels (or
states) can also be designated as on and off (or TRUE and FALSE).
George Boole introduced the concept of binary number system in the
studies of this mathematical theory of LOGIC in the Laws of Thought in
1854 and developed its algebra known as Boolean Algebra.

5.3 : Primary Logic Gates

The common use of logic elements is to act as switches, although they
have no moving parts. They open to pass on a pulse of electricity or
close to shut it off. This is why they are known as gates. The primary
gates are OR, AND, NOT.

OR Gate

An OR gate has an output 1 if any of its inputs are 1. The diagram and

truth table for two input OR gate are shown in Fig 5.1. Ideal output, Y =
A + B, where + denotes OR operation.

47

AND Gate

Computer Basics

(a) A
‘) o
Truth Table

(b)

A
0
0
1
1

— o — oW

Y
0
1
1
1

Figure 5.1: Two-input OR gate (a) symbol (b) truth table.

Figure 5.2 Illustrates, the close relationship between 2-input OR gate and
electrical switching circuits. Such a circuit normally contains some
source of energy (a battery), an output device (a lamp), and one or more
switches - all connected by wires. A switch is a two-state device that is
either closed (on) or open (off). In Figure 5.2 switch A and B, are
connected in parallel. The lamp will light if switch A is closed, or if
switch B is closed, or if both switches are closed. But this is the property
described by the truth table for the OR gate, where 1 denotes that the
switches or lamp is on and 0 indicates that it is off.

AO—
o—1
Switches @
il
Battery Lamp

Figure 5.2: Parallel circuit.
AND Gate

An AND gate has an output 1 if all of its inputs are 1. The diagram and
truth table for a two input AND gate are shown in Figure 5.3. Here
output, Y= A.B, where "' denotes AND operation.

@) g > Y=AB

48

NOT Gate

Number Systems, Codes and Logic Functions

(b) Truth Table

A
0
0
1
1

— o — oW
—_o o ol

Figure 5.3: Two-input AND gate (a) symbol, (b) truth table.

Figure 5.4 is a circuit showing two switches, A and B, connected in
series. The lamp will light only when both A and B are closed. This is
exactly the property described by the truth table for the AND gate, here
again | denotes that the circuit element is on and 0 denotes that it is off.

7

Bajtte{"y Lamp

Figure 5.4: Series circuit
NOT Gate

A NOT gate has one input and one output. It has the effect of reversing
the input signal and is sometimes called an inverter. The diagram and
truth table for a NOT gate are shown in Fig 5.5. Here output Y= A
where '-' indicates NOT operation.

(a) A—‘>0—Y=X

Truth Table
(b)
A Y
0 1
1 0

Figure 5.5: NOT gate (a) symbol, (b) truth table

49

Secondary Logic Gates I

NAND Gate I

NOR Gate I

Computer Basics

5.4 Secondary Logic Gates

Some secondary gates are NAND, NOR, EXOR etc. NAND and NOR
gates are called universal gates because any one them can be used to
realize of any logic expression.

NAND Gate
A NAND gate has the same effect as an AND gate followed by a NOT

gate. Hence the output will be opposite of the AND gate. The diagram
and truth table for a two-input NAND gate are shown in Figure 5.6.

[(S

(b) Truth Table

A
0
0
1
1

—_ o — o|W
O»—»—»—»—<

Figure 5.6: NAND gate (a) symbol (b) truth table

NOR Gate

A NOR gate has the same effect as OR gate followed by a NOT gate.
Hence the output will be the opposite of OR gate. The diagram and truth
table for a two-input NOR gate are shown in Figure 5.7.

@ 2 —DO—Y=(A+B)

(b) Truth Table

A
0
0
1
1

— o — oW

Y
1
0
0
0

Figure 5.7: NOR gate (a) symbol, (b) truth table

50

EXOR Gate

Number Systems, Codes and Logic Functions

EXOR Gate
It is widely used in digital circuits. EXOR is not a primary or basic gate.

Diagram and truth table for a two input EXOR gate are shown in Figure
5.8. Here output Y=A @ B, where @ denotes EXOR operation.

@ g 4))\/ Y=A®B

(b) Truth Table

»—A»—AOO}

B
0
1
0
1

o = = o=

Figure 5.8: EXOR gate (a) symbol, (b) truth table

Basic gates (AND, OR, NOT) and universal gates (NAND, NOR) can be
used in combination to make up digital computer circuits.

51

Computer Basics

5.5 Exercise

52

Multiple choice questions
Which of the following are the primary gates?

OR, AND, NAND i) NOR, AND, NOT
OR, AND, NOT v) NOR, NAND, EXOR.

What is pulses of electricity?

analog signals i) digital signals
voltage iv) current.

An OR gate has an output 1 if

all of its inputs are 1 i) any of its inputs are 1
any of its inputs are 0 iv) all of its inputs are 0.

Analytical questions

What do you know about Boolean algebra?

Draw the diagram and truth table of two-input OR gate.
Explain the operation of the following gates

AND, NOT, NOR, XOR.

What do you understand by basic gate and universal gate?

Number Systems, Codes and Logic Functions

53

