
17

Unit 2: Number Systems, Codes and

Logic Functions

Introduction

A digital computer manipulates discrete elements of data and that these

elements are represented in the binary forms. Operands used for

calculations can be expressed in the binary number system. Other

discrete elements including the decimal digits, are represented in binary

codes. Data processing is carried out by means of binary logic elements

using binary signals. Quantities are stored in binary storage elements.

The purpose of this unit is to introduce the various binary concepts as a

frame of reference for further study in the succeeding units

Lesson 1 : Number Systems

1.1 Learning Objective

On completion of this lesson you will be able to :

• describe different number systems

• identify decimal, binary and other numbers

• explain different number systems with examples.

1.2 Number Systems

Any positive integer b>1 can be chosen as the base for a positional

number system similar to the decimal system (b=10) or the binary

system (b=2). Such a system uses b symbols for the integers

 0, 1, 2, 3, ..., b-1

These symbols are called the digits of the system.

Any integer N is represented in the system by a sequence of base-b digits

:

 N = an an-1... a1 a0

Then bk is the place value of ak, and

N = an × b
n + an-1×b

n-1 + ... + a2 × b
2 + a1 × b

1 + a0 × b
0

Number Systems

Computer Basics

 18

1.3 Decimal System

Any positive integer N, represented in the decimal system as a string of

decimal digits, may also be expressed as a sum of powers of 10, with

each power weighted by a digit. For example, N = 8253 can be

expressed as follows :

8253 = 8×103 +2 ×102 +5 ×101 +3×100

 = 8×1000+2×100+5×10+3×1

 = 8000 + 200 + 50 +3

The powers of ten,

100 = 1 101 = 10 102 = 100 103 = 1000 ...

which correspond respectively to the digits in a decimal integer as read

from right to left, are called the place values of the digits.

Any fractional value M, represented in the decimal system by a string of

decimal digits together with an embedded decimal point, may also be

expressed in expanded notation by using negative powers of 10.

Specifically, the place values of the digits in M to the decimal point are

respectively

 10
-1 = 0.1 10

-2 = 0. 01 10
-3 = 0. 001 ...

For example, M = 837.526 is expressed in expanded notation as follows:

 837.526 = 8×102 +3×101+7×100 +5×10
-1 +2×10

-2 +6×10
-3

 = 800+30+7 + 0.5 + 0.0 2 + 0. 006

This decimal fraction is said to have three decimal places, the number of

digits to the right of the decimal point.

The arithmetic of decimal fractions is not very complicated; one has to

keep track of the decimal points.

1.4 Binary System

Any binary number is therefore a sequence of bits, possibly with an

embedded binary point. Those numbers that have no fractional part, i.e.,

are without an embedded binary point, are called binary integers.

The place values in the binary system are the powers of the base b=2,

just as the place values in the decimal systems are the powers of ten.

Decimal System

Binary System

Number Systems, Codes and Logic Functions

 19

Specifically, the place values of the integral part of a binary number are

the nonnegative powers of two.

 20 21 22 23 ...

and the place values of the fractional part of a binary number are the

negative powers of two,

 2
-1 2

-2 2
-3 ...

Table 1.1.

Binary place values Decimal values

2
-4

2
-3

2
-2

2
-1

20

21

22

23

0.0625

0.125

0.25

0.5

 1

 2

 4

 8

1.5 Octal System

Since 8 = 23, each octal digit has a unique 3-bit binary representation,

given in Table 1.2.

 Table 1.2

Octal digit Decimal values Binary equivalent

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

Octal System

Computer Basics

 20

The place values in the octal system are powers of 8; some of the these

powers appear in Table 1.3.

 Table 1.3

Octal Place Values Decimal Values

8
-3

8
-2

8
-1

80

81

82

83

84

85

1/512 = 0.001953125

 1/64 = 0.015625

 1/8 = 0.125

 1

 8

 64

 512

 4096

 32768

1.6 Hexadecimal System

Since 16 =24, each hexadecimal digit has a unique 4-bit representation

which is shown in Table 1.4. The place values in the hexadecimal

system are the powers of 16, some of which are listed, along with their

decimal values, in Table 1.5.

 Table 1.4 Table 1.5

Hexadecimal

Digits

Decimal

Values

Birnary

Equivalents

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Hexadecimal System

Hexadecimal

Place Values

Decimal Values

16
-3

16
-2

16
-1

16
0

16
1

16
2

16
3

16
4

16
5

1/4096 =

0.000244140625

 1/256 = 0.00390625

 1/16 = 0.0625

 1

 16

 256

 4096

 65536

 1048576

Number Systems, Codes and Logic Functions

 21

1. 7 Exercise

1. Multiple choice questions

a. The place values in the decimal systems are the powers of

i) 2

ii) 8

iii) 10

iv) 16.

b. The place values of the fractional part of a binary number are the

i) nonnegative powers of 2

ii) negative powers of 2

iii) negative powers of 10

iv) negative powers of 8.

c. Each hexadecimal digit has a unique

i) 2-bit binary representation

ii) 3-bit binary representation

iii) 4-bit binary representation

iv) 5-bit binary representation.

2. Analytical questions

i) How 625.536, 0.326, 735, 1278 can be expressed in expanded

notation in respect of decimal system?

ii) Identify the number of digit needed to express decimal, binary,

octal & hexadecimal system.

3. Questions for short answers

i) What are the bases of binary, decimal, octal and hexadecimal

numbers?

ii) Give binary values for hexadecimal number AF3.

Computer Basics

 22

Lesson 2 : Conversion of Numbers

2.1 Learning Objective

On completion of this lesson you will be able to :

• identify the differences between different number systems

• convert binary to decimal

• convert decimal to binary

• interconvert hexadecimal-decimal

• interconvert hexadecimal-binary.

2.2 Binary-to-Decimal Conversion

Any binary number can be written in expanded notation as the sum of

each digit times that digit's place value. For example,

110101 = 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

101.110 = 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2
-1 + 1 × 2

-2 + 0 × 2
-3

Since each power of two is weighted by either 0 or 1, the binary number

is simply the sum of those place values in which the bit 1 appears. This

sum at once gives us the decimal equivalent of the binary number.

Table 1.6 lists the binary representations of the integers from 0 to 25,

with the place of the bits shown at the top of the table. Sometimes a

subscript 2 is used to distinguish a binary number, e.g. one may write

1010112 if it is not clear from the context that 101011 is a binary number

rather than a decimal number. Also, for easier reading, one sometimes

separates a binary number into 4-bit groups, to the left and right of the

binary point; e.g.

10110100.011010 might be written 1011 0100.0110 10

Number Systems, Codes and Logic Functions

 23

Table 1.6

Decimal Binary Number

Number 16s 8s 4s 2s 1s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

 0

 1

 1 0

 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

 1 0 0 0

 1 0 0 1

 1 0 1 0

 1 0 1 1

 1 1 0 0

 1 1 0 1

 1 1 1 0

 1 1 1 1

 1 0 0 0 0

 1 0 0 0 1

 1 0 0 1 0

 1 0 0 1 1

 1 0 1 0 0

 1 0 1 0 1

 1 0 1 1 0

 1 0 1 1 1

 1 1 0 0 0

 1 1 0 0 1

Example 2.1:

(a) To convert 1101012 to its decimal equivalent, write the appropriate

place value over each bit and then add up those powers of two which

are weighted by 1 :

Place values 2

5
 2

4
 2

3
 2

2
 2

1
 2

0

Binary number 1 1 0 1 0 1

 Decimal equivalent

1

4

16

32

53

Computer Basics

 24

(b) To convert 101.11012 to its decimal equivalent, use Table 1.1 for

the decimal values of the negative powers of two

Place values 2
2
 2

1
 2

0
2
-1
 2

-2
 2

-3
 2

-4

Binary number 1 0 1 1 1 0 1

 Decimal equivalent

2.3 Decimal-to-Binary Conversion

It is possible to find binary representation of a decimal number N by

converting its integral part (NI), and its fractional part (NF) separately. It

is illustrated with the decimal number N = 109.78125.

Example 2.2

(a) To convert NI = 109 to binary equivalent, divide NI and each

successive quotient by 2, noting the remainders, as follows :

 Divisions Quotients Remainders

 109 ÷ 2 54 1

 54 ÷ 2 27 0

 27 ÷ 2 13 1

 13 ÷ 2 6 1

 6 ÷ 2 3 0

 3 ÷ 2 1 1

 1 ÷ 2 0 1

The zero quotient indicates the end of the calculations. The sequence of

remainders from the bottom to up, as indicated by the arrow, yields the

required binary equivalent. That is NI = 109 = 11011012.

In practice, the above divisions may be condensed as follows :

 Remainders

 2)109

 2)54 1

 2)27 0

 2)13 1

 2)6 1

 2)3 0

 1 1

0.0625
0.25
0.5

1

Decimal-to-Binary Conversion

4

58125.

Number Systems, Codes and Logic Functions

 25

Here stop when the quotient, 1, is less than the divisor 2, since this last

quotient will be next and last remainder. Again the arrow indicates the

sequence of bits that gives the binary equivalent of the number.

(b) To convert NF = 0.78125 to its binary equivalent, multiply NF and

each successive fractional part by 2, noting the integral part of the

product, as follows :

 Multiplications Integral parts

 0.78125 × 2 = 1.56250 1

 0.5625 × 2 = 1.1250 1

 0.125 × 2 = 0.250 0

 0.25 × 2 = 0.50 0

 0. 50 × 2 = 1.00 1

The zero fractional part indicates the end of the calculations. It is

observed that the integral part of any product can only be 0 or 1, since it

is required to double number which is less than one. The sequence of

integral-part digits from the top to down, as indicated by the arrow,

yields the required binary equivalent. That is, NF = 0.78125 = 0.110012.

In practice, the above multiplications may be condensed as follows :

 0.781 25

 ×2

 1.562 50

 ×2

 1.125 00

 ×2

 0.250 00

 × 2

 0.500 00

 ×2

 1.000 00

It is observed that the integral part of each product is underlined and

does not figure in the next multiplication. Again the arrow indicates the

sequence of integral or integral-part digits that give the required binary

representation.

It is found that the binary equivalents of the integral and fractional parts

of the decimal number N = 109.78125. The binary equivalent of N is

simply the sum of these two equivalents:

 N = NI + NF = 1101101.11001

Computer Basics

 26

Example 2.3 :

Let, N = 13.6875. Convert the integral part, NI = 13, and the fractional

part, NF = 0.6875, into binary forms :

 Remainders Integral parts

2)13 0.6875

 2)6 1 ×2

 2)3 0 1.3750

 1 1 ×2

 0.7500

 ×2

 1.5000

 ×2

 1.0000

Thus, N = 13.6875 = 1101.10112.

Remark: The binary equivalent of a terminating decimal fraction does

not always terminate. For example, convert N = 0.6 as above:

 Multiplications Integral parts

 0.6 × 2 = 1.2 1

 0.2 × 2 = 0.4 0

 0.4 × 2 = 0.8 0

 0.8 × 2 = 1.6 1

At this point in the procedure, one can again multiply 0.6 by 2. This

means the above four steps will be repeated again and again. That is,

 N = 0.6 = 0.1001 1001 1001 ...2

(The number of bits which repeat is not always four; nor does the

repeating block necessarily begin at the binary point, it depends on the

given N.)

2.4 Hexadecimal-Decimal Interconversion

Conversion between the hexadecimal and decimal systems is

accomplished via the algorithms of Section 2.3 with b = 16. There is an

added difficulty in that one has to know how to handle the hexadecimal

digits A, B, C, D, E and F. One can also convert from hexadecimal to

decimal by decimal evaluation of the expanded hexadecimal form.

Hexadecimal-Decimal Inter-

conversion

Number Systems, Codes and Logic Functions

 27

Example 2.4 :

(a) To convert 73D516 to its decimal equivalent, express the number in

expanded notation, change D to 13, and then calculate using

decimal arithmetic.

73D516 = 7×16
3 +3×162 +13×161 +5×160

 = 7×4096+3×256+13×16 + 5×1

 = 28672 + 768 + 208 +5 = 29653

Alternatively, one can apply the conversion algorithm as follows :

 7

 ×16

 112

 +3

 115

 ×16

 1840

 +13

 1853

 ×16

 29648

 +5

 29653 = 73D516

(b) Convert 39.B816 to its decimal equivalent as follows :

39.B816 = 3 × 16
1 + 9 × 160 + 11 × 16

-1 + 8 × 16
-2

 = 3 × 16 + 9 × 1 + 11 × 0.0625 + 8 × 0.00390625

 = 48 + 9 + 0.6875 + 0.03125 = 57.71875

(c) To convert the decimal number P = 9719 to its hexadecimal

equivalent, divide P, and each successive quotient by the base b =

16, noting the remainders, as follows :

 Divisions Quotients Remainders

 9719 ÷ 16 607 7

 607 ÷ 16 37 15

 37 ÷ 16 2 5

 2 ÷ 16 0 2

The sequence of remainders, which replaces the decimal remainder 15

by the hexadecimal digits F, in reverse order, gives the hexadecimal

form for P; i.e. P = 25F716.

Computer Basics

 28

(d) To convert the decimal fraction Q = 0.78125 to its hexadecimal

equivalent, apply the integral-part algorithm, with b = 16, as

follows :

 Multiplications Integral parts

0.78125 × 16 = 12.50000 12

 0.50000 × 16 = 8.00000 8

In this case a zero fractional part is reached. The sequence of integral

parts, which replace the decimal 12 by the hexadecimal digit C, gives the

required hexadecimal form for Q = 0.C816.

(e) To convert the decimal number N= 9719.78125 to its hexadecimal

form, add the representations found in (c) and (d) :

 N = P + Q = 25F7.C816

Hexadecimal-Binary Interconversion

This is accomplished exactly as octal-binary interconversion, except that

4-bit equivalents are now involved.

Example 2.5 :

Convert to binary form (a) 3D5916, (b) 27.A3C16.

Replace each hexadecimal digit by its 4-bit representation (Table 1.4)

(a) 3 D 5 9

 0011 1101 0101 1001

 Hence, 3D5916 = 111101010110012.

(b) 27.A3C

 0010 0111 . 1010 0011 1100

 Hence, 27.A3C16 = 100111�10100011112.

Hexadecimal-Binary Inter-

conversion

Number Systems, Codes and Logic Functions

 29

Example 2.6 :

Convert to hexadecimal form (a) 101101001011102, (b)

11100.10110110112.

Partition each binary number into 4-bit blocks to the left and right of the

binary point adding 0s if necessary. Then replace each 4-bit block by its

equivalent hexadecimal digit (Table 1.4).

(a) 0010 1101 0010 1110

 2 D 2 E

 Hence, 2D2E16 is the required hexadecimal form.

(b) 0001 1100. 1011 0110 1100

 1 C. B 6 C

 Hence, 1C.B6C16 is the required hexadecimal form.

2.5 Exercise

1. Multiple choice questions

a. The decimal equivalent of 11102 is

i) 8

ii) 10

iii) 12

iv) 14.

b. The decimal equivalent of 101102 is

i) 15

ii) 18

iii) 22

iv) 24.

Computer Basics

 30

c. The binary equivalent of 109 is

i) 1001102

ii) 11110012

iii) 11011012

iv) 11101012.

d. The decimal equivalent of 25 F716 is

i) 1719

ii) 9610

iii) 9719

iv) 09919.

2. Analytical questions

a. Convert the following binary numbers to decimal equivalent.

i) 101012

ii) 1001012

iii) 1011.1012

iv) 101.11012.

b. Convert the following decimal numbers to binary

i) 653.625

ii) 13.6875

iii) 367

iv) 235.07.

c. Convert the following hexadecimal numbers to decimal

i) 129A.B8616

ii) 73D516

iii) 0.782516

iv) 39.C816.

d. Convert the following hexadecimal numbers to binary

i) 129A.B8616

ii) 3D5916.

e. Convert the following binary numbers to hexadecimal

i) 101101001011102

ii) 101101101110.10001102.

Number Systems, Codes and Logic Functions

 31

Lesson 3: Binary Arithmetic

3.1 Learning Objective

On completion of this lesson you will be able to :

• add two binary numbers

• multiply two or more binary numbers

• subtract one binary number from another

• do division of binary numbers.

3.2 Binary Addition

The execution of numerical calculations is essentially the same in all

positional number systems. The addition of two binary numbers is

accomplished according to the following three-step algorithm :

Step 1. Add the first (rightmost) column.

Step 2. Record the unit digit of the column sum. If the sum exceeds

one, carry the two's digit 1, to the next column.

Step 3. If there are additional columns or if there is a carry from Step

2, add the next column and repeat Step 2. Otherwise stop.

The addition table for the binary digits 0 and 1 appears as Table 1.7 the

only additional facts needed for binary addition appear in Table 1.8.

+ 0 1 0 + 0 = 0

0 0 1 0 + 1 = 1

1 1 10 1 + 0 = 1

 1 + 1 = 0, with a carry of 1

 1 + 1 + 1 = 1, with a carry of 1

Table 1.7 Binary Addition

 Table 1.8 Binary Addition Facts

Example 3.1 :

Evaluate the binary sum

 111 Addend

 +101 Augend

by means of the three-step algorithm.

Binary Addition

Computer Basics

 32

STEP 1: 1 + 1 = 0, with a carry of 1.

STEP 2:

 1 Carries

 111 Addend

 + 101 Augend

 0

STEP 3: 1+1 = 0, with a carry of 1.

STEP 2.

 11 Carries

 111 Addend

 +101 Augend

 00

STEP 3: 1 + 1 + 1 = 1, with a carry of 1.

STEP 2.

 111 Carries

 111 Addend

 +101 Augend

 100

STEP 3: 1 + 0 =1.

STEP 2.

 111 Carries

 111 Addend

 +101 Augend

 1100 Sum

Step 3. Stop.

Example 3.4 :

To calculate the binary product 1101011 × 10110 multiply 1101011 by

the digits 0, 1, 1, 0 and 1 as follows :

 1101011

 × 10110

 0000000

 1101011

 1101011

 0000000

 1101011

Then add the five bottom rows of numbers. In actual practice, one does

not write down any zero products. Finally bring down initial zero, if any

and form a running total, adding one nonzero row after another :

Number Systems, Codes and Logic Functions

 33

 1101011 Initial zero

 × 10110

 11010110 First nonzero product

 1101011 Second nonzero product

 1010000010 Sum

 1101011 Third nonzero product

 100100110010 Final sum

The final sum is the required product. Here it is extremely important to

line up the numbers in the correct columns.

3.3 Binary Subtraction

Subtraction in the binary system can be performed using the following

two-step algorithm:

Step 1. If the lower (subtrahend) digit is greater than the upper

(minuend) digit, borrow from the next column to the left.

Step 2. Subtract the lower value from the upper value.

In Step 1 ''borrowing" means appropriating, with no intention of paying

back.

The only subtraction facts needed for binary subtraction are the four

listed in Table 1.9.

The last entry comes from :

 10 - 1 = 1

That is, the difference 0 - 1 requires borrowing, which then yields 10 -1

= 1.

 Table 1.9 Binary subtraction facts

 0 - 0 = 0

 1 - 0 = 1

 1 - 1 = 0

 0 - 1 = 1, with a borrow of 1 from the next column

Example 3.5 :

To evaluate the binary difference 11101-1011, one could apply the

subtraction facts in Table 1.5 and obtain.

 11101

 - 1011

 10010

Binary Subtraction

Computer Basics

 34

It is observed that 1 is borrowed from the third column because of the

difference 0-1 in the second column.

As with decimal subtraction, binary subtraction becomes more complex

when a borrow is needed from a digit which is 0. Again, a borrow is

taken from the first nonzero digit to the left, but now each intervening 0

becomes 1 (as 10-1=1).

Example 3.6 :

Consider the difference

 11000

 -10011

Obtain,

 011

 11000

 - 10011

 101

Here a difference 0 - 1 occurs in the first column; hence it is required to

borrow from the fourth column, where the first nonzero digit to the left

appears, and the two intervening 0s become 1s.

Example 3.7 :

Calculate the difference 1100101001-110110110.

 00110 01

 1100101001

 - 110110110

 101110011

3.4 Binary Division

Recall that the division of decimal numbers can be reduced to

multiplying the divisor by individual digits of the dividend and

subtraction.

Example 3.8 :

Calculate 42558 ÷ 123. Here 123 is the divisor. The algorithm for

division yields :

Binary Division

Number Systems, Codes and Logic Functions

 35

 346

 123)42558

 369

 565

 492

 738

 738

 0

That is, multiply 123 by 3 and subtract the product, from 425; then

multiply 123 by 4 and subtract the product 492, from 565; lastly multiply

123 by 6 and subtract the product 738, from 738, to obtain a 0

remainder. [Because of the geometry of the scheme, what these steps

actually accomplish is first to subtract 3 × 102 times the divisor from the

dividend, then 4 × 10 times the divisor from what is left, and then 6

times the divisor from what is left. At that point the dividend is

exhausted, showing that the dividend originally contained the divisor

3 ×102 + 4 × 10 + 6 =346 times].

The above algorithm also works for binary division. In fact, multiplying

the divisor by the only nonzero digit, 1, does not change the number;

hence the algorithm for division reduces to repeated subtraction of the

divisor (times a power of 2).

Example 3.9 :

Evaluate 1010001 ÷ 11. This gives

 11011

 11)1010001

 11

 100

 11

 100

 11

 11

 11

 0

Thus the quotient is 11011.

As in decimal division of integers, a remainder is possible when one

binary is divided by another. Also, the division of binary fractions is

handled the same way as the division of decimal fractions; that is, one

converts the divisor to an integer by moving the binary point in both the

divisor and the dividend the same the number of places.

Computer Basics

 36

Example 3.10 :

Evaluate 1110111 ÷ 1001. Applying the usual division algorithm,

 1101

 1001)1110111

 1001

 1011

 1001

 1011

 1001

 10

The quotient is 1101, with a remainder 10.

3.5 Complements

Arithmetic complements require in two separate but related situations.

First of all, complements come up in storing numbers in the computer.

While human-beings use the signs + and - to denote positive and

negative numbers, the computer can process data only in terms of bits.

Although it is possible to reserve a bit to denote the sign of a number

(say, 0 for + and 1 for -), many computers store negative numbers in the

form of their arithmetic complements.

Complements also arise in the operation of subtraction. In fact,

complements can be used to reduce subtraction to addition. This is

especially useful as it avoids the possibility of repeated borrowing from

one column to another.

There are two types of complements, the one's complement and two's

complement, respectively.

A is a binary number, the one's complement of A is obtained by

subtracting each digit of A from 1, and the two's complement of A is its

one's complement plus 1.

Example 3.11 :

Binary number: 111100001111

One's complement: 000011110000

Two's complement: 000011110001

Complements

Number Systems, Codes and Logic Functions

 37

Observe that taking the ones complement simply inverts each digit, i.e. 0

is replaced by 1 and 1 is replaced by 0.

As in the decimal system, binary subtraction is performed by adding the

radix-minus-one (one's) complement plus one or by adding the radix

(two's) complement.

Example 3.12 :

Evaluate the difference Y = B - A, where A = 10001110 and B =

11110000.

(a) First by ordinary binary subtraction :

 011

 11110000 B

 -10001110 A

 01100010 Y

Observe that the borrowing was propagated to the third digit to the left.

(b) The one's complement of A is 01110001. Add this to B and then

add 1:

 11110000 B

 + 01110001 One's complement of A

 �01100001

 1

 01100010

(This method is also given the name end-around carry).

(c) The two's complement of A is 01110010. Add this to B:

 11110000 B

 +01110010 Two's complement of A

 �01100010

Deleting the 1 (which would be an overflow in an 8-bit register) gives

the difference Y.

Computer Basics

 38

3.6 Exercise

1. Multiple choice questions

a. Addition in the binary system can be performed using

i) 2 step algorithm

ii) 3 step algorithm

iii) 4 step algorithm

iv) 5 step algorithm.

b. Complement arise in the operation of

i) addition

ii) subtraction

iii) multiplication

iv) conversion.

2. Analytical questions

a. Describe the three step algorithm with example.

b. Describe the 2-step algorithm.

c. Add the following binary numbers

 i) 101102 and 11002

 ii)1001012 and 101002.

d. Multiply the following numbers

 i) 1000112 and 1012

 ii)1012 and 10112.

e. Evaluate the following

 i) 10010 - 11011

 ii) 10101 - 00110

 iii)11101 - 1011.

f. Evaluate the following

 i) 11010011 ÷ 11
 ii) 11110111 ÷ 1001.

Number Systems, Codes and Logic Functions

 39

g. What do you understand by 1's complement and 2's complement

method?

h. Find the 1's complement and 2's complement of the following

numbers

 i) 1011012

 ii) 1111000011112

 iii) 909010

 iv) 10101012.

i. Perform following subtraction using 1's and 2's complement

method

 i)11011 - 10010

 ii)10001110 - 11110000

 iii) 10101 - 00110.

Computer Basics

 40

Lesson 4 : Data Representation and Codes

4.1 Learning Objective

On completion of this lesson you will be able to :

• describe different methods of coding

• know the definitions of data, information and code

• describe different methods of data representation in computers

• identify different representation of numbers in computers.

4.2 Data Information and Codes

‘Data’ are the names given to basic facts such as names and numbers.

Examples are: unit price, quantity sold, times, dates, product, name,

addresses, tax codes.

Information is data which has been converted into a more useful form,

i.e. processed facts. For example: total price = unit price × quantity sold.
Here total price is information and unit price, quantity sold are data.

Examples are: pay slips, receipts, reports.

‘Codes’ are used to reduce the volume of data. The recording of data can

be made less laborious, less prone to error and the data will subsequently

be more manageable and easier to manipulate if standard abbreviations

or simplified representations are used. This technique is called data

coding. Examples: Yes/No answers on forms can be represented by

single Y’s or N’s. A person's sex may be indicated by M or F.

4.3 Data Representation

Here discussion will be on how numeric data are represented inside the

computer using straight binary coding, which encodes an entire number

as a whole. Straight binary coding requires that numbers be stored in

computer locations as a fixed number of bits. A list of bits so treated as a

unit is called a word, and the number of bits is called the length of the

word. For definiteness, assume, unless otherwise stated, that computers

have words of fixed length 32.

Integers Representation

Integers or fixed-point numbers are numbers that have no decimal points.

An integer J is represented in the memory of the computer by its binary

form if J is positive, and by its 2's complement (i.e. the 2's complement

of its absolute value) if J is negative.

Example 4.1 :

Data Information and Codes

Integers Representation

Number Systems, Codes and Logic Functions

 41

The computer stores 423 = 1101001112 in a 32-bit memory location by

introducing sufficient 0s at the beginning of the binary form:

0 0 0 0 0 ... 0 0 1 1 0 1 0 0 1 1 1

The computer stores -423 in a memory location by taking the 1's

complement of the above representation for 423 and then adding 1:

1 1 1 1 1 ... 1 1 0 0 1 0 1 1 0 0 1

In the first display the dots represent omitted 0s; in the second omitted

1's.

The computer can tell whether an integer J in memory is positive or

negative by looking at the left most bit. If the first bit is 0, then J is

positive; if the left most bit is 1, then J is negative. Accordingly, the

largest (positive) integer that can be stored in a 32-bit memory location

 0 1 1 1 1 ... 1 1 1 1 1

 31 ones

Or 2
31
-1, which is approximately 2 billion, Similarly, the smallest

(negative) integer that can be stored in a 32-bit memory location is -2
31
,

or approximately -2 billion.

Binary Exponential Form

Binary numbers, like decimal numbers, can be written in exponential

form, where powers of two are used instead of powers of ten. Thus, each

nonzero binary number has a unique normalized exponential form in

which the binary point appears before the first 1 bit. This unique form

yields a unique mantissa M, and a unique integer n representing the

exponent to two. Either of these numbers may be positive or negative,

and the exponent n may also be zero.

Table 1.10 gives some binary numbers in normalized exponential form,

each mantissa being written with exactly 5 bits.

-423

423

Computer Basics

 42

Table 1.10

Binary

Number

Normalized

Exponential

Form

Mantissa Exponent

 1010.1

 0.001111

-111

 0.1

- 0.01010101

 0.10101 × 24
 0.11110 × 2 -2
-0.11100 × 23
 0.10000 × 20
-0.10101 × 2 -1

 0.10101

 0.11110

-0.11100

 0.10000

-0.10101

 4

-2

 3

 0

-1

Floating-Point Representation

Floating-point numbers (also called real number) have embedded

decimal points. Such numbers are stored and processed in binary

exponential forms. The memory location is divided into three fields, or

blocks of bits. One field, the first bit, is reserved for sign of the number

(usually 0 for + and 1 for -); a second field, for the exponent of the

number; and last field, for the mantissa of the number. Figure 4.1 shows

the usual fields of a 32-bit memory location. With a 24-bit mantissa

field, the precision of the computer is 8 (significant decimal digits).

 sign exponent mantissa

 1 bit 7 bits 24 bits

 Figure 4.1

It remains to discuss the way the integer exponent, n, of a floating-point

number is represented in its field. A few computers stores n as its binary

form when n is positive or zero, and as its 2's complement when n is

negative; i.e. the same way that fixed-point integers are stored in

memory. However, most computers represent n by its characteristic, n +

2
t-1
, where t is the number of bits in the exponent field. Table 1.11 shows

the relationship between the true exponent n and its characteristic when

t =7. Observe that a 7-bit exponent field can represent exponents from -

64 to 63, which means that the computer can store floating-point

numbers between 2
-64
 and 263.

 Table 1.11

True Exponent -64 -63 -62 -61 ... -1 0 1 ... 63

Characteristic 0 1 2 3 ... 63 64 65 ... 127

Floating-Point Representation

Number Systems, Codes and Logic Functions

 43

Example 4.2 :

Given A = -419.8125. Converting A to binary form yields

 A = -110100011.11012

 Hence the normalized exponential form of A is

 A = - 0.1101000111101 × 29

The true exponent of A being 9, its 7-bit characteristic is

 9 + 64 = 73 = 10010012

Thus A will be stored in the 32-bit memory location as follows.

 Characteristics  Mantissa
1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 ... 0 0

 Sign bit

Observe that (i) the first bit is 1, which indicates that A is negative; (ii)

the first characteristic field is 1, which indicates that the exponent of A

is nonnegative; and (iii) sufficiently many 0s are attached to the end of

the mantissa of A to complete the 24-bit mantissa field.

4.4 BCD Code

There are many ways of representing numerical data in binary form. One

way is simply to write the numbers to the base 2. This is called straight

binary coding. Another way is to encode decimal digits. These code,

which require 4 bits for each decimal digit, is called BCD (binary-coded

decimal) code.

 Table 1.12

Decimal

Digits

BCD

Code

 8-4-2-1

0

1

2

3

4

5

6

7

8

9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

4-bit BCD words are shown in Table 1.12. The first one is a weighted

code, in which the bits are given, from left to right, the weights 8, 4, 2,

BCD Code



Computer Basics

 44

and 1, respectively. Since these weights are just the place valves in the

binary system, a decimal digit is encoded as its binary representation.

Example 4.3 :

The BCD representation of N = 469 is

 4 6 9

0100 0110 1001

On the other hand, the straight binary representation of N is

 N =1110101012

which involves 3 fewer bits.

4.5 Parity

For each character, the value of the check bit (0 or 1) is such as to make

the sum of the bits, including the check bit, odd or even, according as the

machine operates on odd or even parity.

Example 4.4 :

If the computer uses odd parity, the characters 7, 9 are stored as follows:

Character 6 bit code Parity bit Complete representation using odd

parity

7

9

000111

001001

0

1

0000111

1001001

That is, the check bit for 7 is 0 because the sum of the odd bits in the 6-

bit code for 7 is three, which is already odd. On the other hand, the

check bit for 9 is 1 because the sum of the bits in the 6-bit code for 9 is

two which is even.

The purpose of the check bit is to ensure that no bit is lost or gained

when data are transmitted internally in a computer. After a character is

transmitted, the computer adds up the bits in the character. If a single

error occurs, the sum of the bits will not have the same parity as the

parity of the computer. The computer would then retransmit the data.

Clearly, the computer cannot use this type of checking to see if two

errors occurred; but such an occurrence is very unlikely.

Parity

Number Systems, Codes and Logic Functions

 45

4.6 EBCDIC and ASCII

Modern data processing frequently requires more than the 28 special

characters possible under any 6-bit BCD code. (Some data processing

equipment may even want both lowercase and uppercase letters).

Accordingly, various 8-bit codes have been developed. Each coded

character, or byte, is normally divided into four zone bits and four 8-4-2-

1 numeric bits, as shown;

 zone bits numeric bits

Z Z Z Z 8 4 2 1

More generally, the word ‘byte’ is used to denote any group of eight bits.

It is seen that a byte may be represented by two hexadecimal digits, the

first corresponding to the zone bits and the second to the numeric bits.

As with the 4- and 6-bit BCD codes, an extra, check bit is utilized in the

computer.

There are two 8-bit BCD code predominant in the computer industry

today. EBCDIC, pronounced ‘ebb-see-dick’ and is short for Extended

Binary-Coded Decimal Interchange Code. This code developed by IBM,

is used mainly by IBM-compatible computer systems (Table 1.13).

ASCII pronounced 'ass-key' and is short for American Standard Code for

Information Interchange. This code was originally developed as a 7-bit

standardization of various special codes, and was then extended to an 8-

bit code. It is used mainly by non-IBM computer systems (Table 1.14).

 Table 1.13 EBCDIC

Char. Zone Numeric Hex Char. Zone Numeric Hex Char. Zone Numeric Hex

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R

1100 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
1100 1001
1101 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
1101 1001

C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
D5
D6
D7
D8
D9

S
T
U
V
W
X
Y
Z

Char.

0
1
2
3
4
5
6
7
8
9

1110 0010
 0011
 0100
 0101
 0110
 0111
 1000
1110 1001

Zone Numeric

1111 0000
 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
1111 1001

E2
E3
E4
E5
E6
E7
E8
E9

Hex

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9

black
.
<
(
+
&
$
*
)
;
-
/
,
%
>
?
:

@
=

0100 0000
 1011
 1100
 1101
0100 1110
0101 0000
 1011
 1100
 1101
0101 1110
0110 0000
 0001
 1011
 1100
 1110
0110 1111
0111 1010
 1011
 1100
0111 1110

40
4B
4C
4D
4E
50
5B
5C
5D
5E
60
61
6B
6C
6E
6F
7A
7B
7C
7E

EBCDIC and ASCII

Computer Basics

 46

Table 1.14

Char. Zone Numeric Hex Char. Zone Numeric Hex Char. Zone Numeric He
x

0
1
2
3
4
5
6
7
8
9

0101 0000
 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
0101 1001

50
51
52
53
54
55
56
57
58
59

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

1010 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
 1001
 1010
 1011
 1100
 1101
 1110
1010 1111

A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

P
Q
R
S
T
U
V
W
X
Y
Z

1011 0000
 0001
 0010
 0011
 0100
 0101
 0110
 0111
 1000
 1001
1011 1011

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA

In both systems a digit has its binary representation as the numeric

portion of its code. For the zone portion, EBCDIC uses 1111 and ASCII

uses 0101.

4.7 Exercise

1. Multiple choice questions

a. Codes are used to reduce the volume of

i) information ii) data

iii) numbers iv) files.

b. Integers numbers are numbers that have

i) decimal points ii) no decimal points

iii) embedded decimal points iv) no embedded decimal points.

c. BCD codes require

i) 4 bits for each decimal digit

ii) 7 bits for each decimal digit

iii) 8 bits for each decimal digit

iv) 10 bits for each decimal digit.

2. Analytical questions

a. What do you mean by data, information and codes?

b. Describe different representation of numbers in computer.

c. Write the BCD representation of the following numbers

 a) 469 and b) 4793.

d. What do you understand by BCD, ASCII and EBCDIC codes?

Number Systems, Codes and Logic Functions

 47

Lesson 5 : Logic Functions

5.1 Learning Objective

On completion of this lesson you will be able to :

• know the elementary concept of Boolean algebra

• describe the primary logic gates like AND, OR, NOT

• draw truth table of output variable for a combination of input

variables

• explain the operation of secondary gates like NAND, NOR and

EXOR.

5.2 Introduction

Data and control instructions move inside a computer by means of pulses

of electricity. Certain components of computers combine these pulses as

if they were following a set of rules. The components are the logic

elements. Computer logic is the combination of inputs and outputs

produced by logic elements.

Pulses of electricity are called digital signals. A digital signal has two

discrete levels or values. The two discrete signal levels HIGH and LOW

can also be represented by binary digits 1 and 0 respectively. A binary

digit (0 or 1) is referred to as a bit. Since a digital signal can have only

one of the two possible levels 1 or 0, the binary number system can be

used for the analysis and design of digital systems. The two levels (or

states) can also be designated as on and off (or TRUE and FALSE).

George Boole introduced the concept of binary number system in the

studies of this mathematical theory of LOGIC in the Laws of Thought in

1854 and developed its algebra known as Boolean Algebra.

5.3 : Primary Logic Gates

The common use of logic elements is to act as switches, although they

have no moving parts. They open to pass on a pulse of electricity or

close to shut it off. This is why they are known as gates. The primary

gates are OR, AND, NOT.

OR Gate

An OR gate has an output 1 if any of its inputs are 1. The diagram and

truth table for two input OR gate are shown in Fig 5.1. Ideal output, Y =

A + B, where + denotes OR operation.

Primary Logic Gates

OR Gate

Computer Basics

 48

(a) A

 B

 Truth Table

(b)

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

Figure 5.1: Two-input OR gate (a) symbol (b) truth table.

Figure 5.2 Illustrates, the close relationship between 2-input OR gate and

electrical switching circuits. Such a circuit normally contains some

source of energy (a battery), an output device (a lamp), and one or more

switches - all connected by wires. A switch is a two-state device that is

either closed (on) or open (off). In Figure 5.2 switch A and B, are

connected in parallel. The lamp will light if switch A is closed, or if

switch B is closed, or if both switches are closed. But this is the property

described by the truth table for the OR gate, where 1 denotes that the

switches or lamp is on and 0 indicates that it is off.

 A

 B

 Switches

 Battery Lamp

Figure 5.2: Parallel circuit.

AND Gate

An AND gate has an output 1 if all of its inputs are 1. The diagram and

truth table for a two input AND gate are shown in Figure 5.3. Here

output, Y= A.B, where '.' denotes AND operation.

(a) A

 B

Y

Y = A.B

AND Gate

)

�

� O

O

Number Systems, Codes and Logic Functions

 49

(b) Truth Table

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

Figure 5.3: Two-input AND gate (a) symbol, (b) truth table.

Figure 5.4 is a circuit showing two switches, A and B, connected in

series. The lamp will light only when both A and B are closed. This is

exactly the property described by the truth table for the AND gate, here

again 1 denotes that the circuit element is on and 0 denotes that it is off.

 A B

 Battery Lamp

 Figure 5.4: Series circuit

NOT Gate

A NOT gate has one input and one output. It has the effect of reversing

the input signal and is sometimes called an inverter. The diagram and

truth table for a NOT gate are shown in Fig 5.5. Here output Y= A

where '-' indicates NOT operation.

(a) A Y = A

 Truth Table

(b)

A Y

0 1

1 0

Figure 5.5: NOT gate (a) symbol, (b) truth table

NOT Gate

o o
� �

O

Computer Basics

 50

5.4 Secondary Logic Gates

Some secondary gates are NAND, NOR, EXOR etc. NAND and NOR

gates are called universal gates because any one them can be used to

realize of any logic expression.

NAND Gate

A NAND gate has the same effect as an AND gate followed by a NOT

gate. Hence the output will be opposite of the AND gate. The diagram

and truth table for a two-input NAND gate are shown in Figure 5.6.

(a) A

 B

(b) Truth Table

A B Y

0

0

1

1

0

1

0

1

1

1

1

0

Figure 5.6: NAND gate (a) symbol (b) truth table

NOR Gate

A NOR gate has the same effect as OR gate followed by a NOT gate.

Hence the output will be the opposite of OR gate. The diagram and truth

table for a two-input NOR gate are shown in Figure 5.7.

(a) A

 B

(b) Truth Table

A B Y

0

0

1

1

0

1

0

1

1

0

0

0

 Figure 5.7: NOR gate (a) symbol, (b) truth table

O Y = A . B

o Y = (A + B)

Secondary Logic Gates

NAND Gate

NOR Gate

)

Number Systems, Codes and Logic Functions

 51

EXOR Gate

It is widely used in digital circuits. EXOR is not a primary or basic gate.

Diagram and truth table for a two input EXOR gate are shown in Figure

5.8. Here output Y= A ⊕ B , where ⊕ denotes EXOR operation.

(a) A

 B

(b) Truth Table

A B Y

0

0

1

1

0

1

0

1

0

1

1

0

 Figure 5.8: EXOR gate (a) symbol, (b) truth table

Basic gates (AND, OR, NOT) and universal gates (NAND, NOR) can be

used in combination to make up digital computer circuits.

Y = A ⊕ B

EXOR Gate

))

Computer Basics

 52

5.5 Exercise

1. Multiple choice questions

a. Which of the following are the primary gates?

i) OR, AND, NAND ii) NOR, AND, NOT

iii) OR, AND, NOT iv) NOR, NAND, EXOR.

b. What is pulses of electricity?

i) analog signals ii) digital signals

iii) voltage iv) current.

c. An OR gate has an output 1 if

i) all of its inputs are 1 ii) any of its inputs are 1

iii) any of its inputs are 0 iv) all of its inputs are 0.

B. Analytical questions

a. What do you know about Boolean algebra?

b. Draw the diagram and truth table of two-input OR gate.

c. Explain the operation of the following gates

 AND, NOT, NOR, XOR.

d. What do you understand by basic gate and universal gate?

Number Systems, Codes and Logic Functions

 53

